CFD Simulation Analysis on Make-up Air Supply by Distance from Cookstove for Cooking-Generated Particle

Indoor cooking is the main cause of particulate matter (PM) within residential houses along with smoking. Even with the range hood turned on, cooking-generated PM can spread quickly into the living room due to the heat generated by the cookstove. In order to improve the PM spread prevention performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2020-10, Vol.17 (21), p.7799
Hauptverfasser: Kim, Hyungkeun, Kang, Kyungmo, Kim, Taeyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Indoor cooking is the main cause of particulate matter (PM) within residential houses along with smoking. Even with the range hood turned on, cooking-generated PM can spread quickly into the living room due to the heat generated by the cookstove. In order to improve the PM spread prevention performance of the range hood, a supply of make-up air is needed. Generally, make-up air is supplied through a linear diffuser between the kitchen and living room. In such cases, it is necessary to determine the appropriate location of the supply diffuser. This study evaluates the spread of PM according to different locations of the supply diffuser, which feeds in make-up air. For this purpose, indoor airflow and PM spread were analyzed through CFD (Computational Fluid Dynamics) simulation analysis. By changing the location of the supply diffuser from the contaminant source, PM concentration was analyzed in the kitchen and living room of an apartment house in Korea. Based on the results, the optimal installation location was determined. In this study, 1.5 m from the source was the most effective location of make-up air supply to prevent the spread of cooking-generated particles.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph17217799