Predicting antibody affinity changes upon mutations by combining multiple predictors
Antibodies are proteins working in our immune system with high affinity and specificity for target antigens, making them excellent tools for both biotherapeutic and bioengineering applications. The prediction of antibody affinity changes upon mutations ( Δ Δ G binding ) is important for antibody eng...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-11, Vol.10 (1), p.19533-19533, Article 19533 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19533 |
---|---|
container_issue | 1 |
container_start_page | 19533 |
container_title | Scientific reports |
container_volume | 10 |
creator | Kurumida, Yoichi Saito, Yutaka Kameda, Tomoshi |
description | Antibodies are proteins working in our immune system with high affinity and specificity for target antigens, making them excellent tools for both biotherapeutic and bioengineering applications. The prediction of antibody affinity changes upon mutations (
Δ
Δ
G
binding
) is important for antibody engineering. Numerous computational methods have been proposed based on different approaches including molecular mechanics and machine learning. However, the accuracy by each individual predictor is not enough for efficient antibody development. In this study, we develop a new prediction method by combining multiple predictors based on machine learning. Our method was tested on the SiPMAB database, evaluating the Pearson’s correlation coefficient between predicted and experimental
Δ
Δ
G
binding
. Our method achieved higher accuracy (R = 0.69) than previous molecular mechanics or machine-learning based methods (R = 0.59) and the previous method using the average of multiple predictors (R = 0.64). Feature importance analysis indicated that the improved accuracy was obtained by combining predictors with different importance, which have different protocols for calculating energies and for generating mutant and unbound state structures. This study demonstrates that machine learning is a powerful framework for combining different approaches to predict antibody affinity changes. |
doi_str_mv | 10.1038/s41598-020-76369-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7658247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460085913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-d5f0c319f2f6c91a3ed25a3a12d00de9289b5c74af9b0739c186558e028014793</originalsourceid><addsrcrecordid>eNp9kUtLxTAUhIMoKuofcCEFN26qeTRNshFEfIGgC12HNE2vkTapSSrcf2-01-fCbBKYbybnMADsI3iMIOEnsUJU8BJiWLKa1KLka2Abw4qWmGC8_uO9BfZifIb5UCwqJDbBFiGIsRqzbfBwH0xrdbJuUSiXbOPbZaG6zjqbloV-Um5hYjGN3hXDlFSy3sWiyYofmsxk1zD1yY69KcY5yYe4CzY61Uezt7p3wOPlxcP5dXl7d3VzfnZbalrBVLa0g5og0eGu1gIpYlpMFVEItxC2RmAuGqpZpTrRQEaERrymlBuIOUQVE2QHnM6549QMptXGpaB6OQY7qLCUXln5W3H2SS78q2Q15bhiOeBoFRD8y2RikoON2vS9csZPUeKqhpBTgUhGD_-gz34KLq-XKYbyXIzjTOGZ0sHHGEz3NQyC8r03Ofcmc2_yozfJs-ng5xpfls-WMkBmIGYpFxK-__4n9g0CyqRx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471558782</pqid></control><display><type>article</type><title>Predicting antibody affinity changes upon mutations by combining multiple predictors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kurumida, Yoichi ; Saito, Yutaka ; Kameda, Tomoshi</creator><creatorcontrib>Kurumida, Yoichi ; Saito, Yutaka ; Kameda, Tomoshi</creatorcontrib><description>Antibodies are proteins working in our immune system with high affinity and specificity for target antigens, making them excellent tools for both biotherapeutic and bioengineering applications. The prediction of antibody affinity changes upon mutations (
Δ
Δ
G
binding
) is important for antibody engineering. Numerous computational methods have been proposed based on different approaches including molecular mechanics and machine learning. However, the accuracy by each individual predictor is not enough for efficient antibody development. In this study, we develop a new prediction method by combining multiple predictors based on machine learning. Our method was tested on the SiPMAB database, evaluating the Pearson’s correlation coefficient between predicted and experimental
Δ
Δ
G
binding
. Our method achieved higher accuracy (R = 0.69) than previous molecular mechanics or machine-learning based methods (R = 0.59) and the previous method using the average of multiple predictors (R = 0.64). Feature importance analysis indicated that the improved accuracy was obtained by combining predictors with different importance, which have different protocols for calculating energies and for generating mutant and unbound state structures. This study demonstrates that machine learning is a powerful framework for combining different approaches to predict antibody affinity changes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76369-8</identifier><identifier>PMID: 33177627</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/469 ; 631/114/663 ; Accuracy ; Affinity ; Antibodies ; Antibodies - chemistry ; Antibodies - genetics ; Antibody Affinity - genetics ; Antigens ; Computational Biology - methods ; Computer applications ; Correlation coefficient ; Databases as Topic ; Humanities and Social Sciences ; Immune system ; Learning algorithms ; Machine Learning ; multidisciplinary ; Mutation ; Science ; Science (multidisciplinary) ; Vascular Endothelial Growth Factor A - immunology</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19533-19533, Article 19533</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-d5f0c319f2f6c91a3ed25a3a12d00de9289b5c74af9b0739c186558e028014793</citedby><cites>FETCH-LOGICAL-c540t-d5f0c319f2f6c91a3ed25a3a12d00de9289b5c74af9b0739c186558e028014793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658247/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658247/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33177627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurumida, Yoichi</creatorcontrib><creatorcontrib>Saito, Yutaka</creatorcontrib><creatorcontrib>Kameda, Tomoshi</creatorcontrib><title>Predicting antibody affinity changes upon mutations by combining multiple predictors</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Antibodies are proteins working in our immune system with high affinity and specificity for target antigens, making them excellent tools for both biotherapeutic and bioengineering applications. The prediction of antibody affinity changes upon mutations (
Δ
Δ
G
binding
) is important for antibody engineering. Numerous computational methods have been proposed based on different approaches including molecular mechanics and machine learning. However, the accuracy by each individual predictor is not enough for efficient antibody development. In this study, we develop a new prediction method by combining multiple predictors based on machine learning. Our method was tested on the SiPMAB database, evaluating the Pearson’s correlation coefficient between predicted and experimental
Δ
Δ
G
binding
. Our method achieved higher accuracy (R = 0.69) than previous molecular mechanics or machine-learning based methods (R = 0.59) and the previous method using the average of multiple predictors (R = 0.64). Feature importance analysis indicated that the improved accuracy was obtained by combining predictors with different importance, which have different protocols for calculating energies and for generating mutant and unbound state structures. This study demonstrates that machine learning is a powerful framework for combining different approaches to predict antibody affinity changes.</description><subject>631/114/469</subject><subject>631/114/663</subject><subject>Accuracy</subject><subject>Affinity</subject><subject>Antibodies</subject><subject>Antibodies - chemistry</subject><subject>Antibodies - genetics</subject><subject>Antibody Affinity - genetics</subject><subject>Antigens</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Correlation coefficient</subject><subject>Databases as Topic</subject><subject>Humanities and Social Sciences</subject><subject>Immune system</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vascular Endothelial Growth Factor A - immunology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLxTAUhIMoKuofcCEFN26qeTRNshFEfIGgC12HNE2vkTapSSrcf2-01-fCbBKYbybnMADsI3iMIOEnsUJU8BJiWLKa1KLka2Abw4qWmGC8_uO9BfZifIb5UCwqJDbBFiGIsRqzbfBwH0xrdbJuUSiXbOPbZaG6zjqbloV-Um5hYjGN3hXDlFSy3sWiyYofmsxk1zD1yY69KcY5yYe4CzY61Uezt7p3wOPlxcP5dXl7d3VzfnZbalrBVLa0g5og0eGu1gIpYlpMFVEItxC2RmAuGqpZpTrRQEaERrymlBuIOUQVE2QHnM6549QMptXGpaB6OQY7qLCUXln5W3H2SS78q2Q15bhiOeBoFRD8y2RikoON2vS9csZPUeKqhpBTgUhGD_-gz34KLq-XKYbyXIzjTOGZ0sHHGEz3NQyC8r03Ofcmc2_yozfJs-ng5xpfls-WMkBmIGYpFxK-__4n9g0CyqRx</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Kurumida, Yoichi</creator><creator>Saito, Yutaka</creator><creator>Kameda, Tomoshi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201111</creationdate><title>Predicting antibody affinity changes upon mutations by combining multiple predictors</title><author>Kurumida, Yoichi ; Saito, Yutaka ; Kameda, Tomoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-d5f0c319f2f6c91a3ed25a3a12d00de9289b5c74af9b0739c186558e028014793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/469</topic><topic>631/114/663</topic><topic>Accuracy</topic><topic>Affinity</topic><topic>Antibodies</topic><topic>Antibodies - chemistry</topic><topic>Antibodies - genetics</topic><topic>Antibody Affinity - genetics</topic><topic>Antigens</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Correlation coefficient</topic><topic>Databases as Topic</topic><topic>Humanities and Social Sciences</topic><topic>Immune system</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vascular Endothelial Growth Factor A - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurumida, Yoichi</creatorcontrib><creatorcontrib>Saito, Yutaka</creatorcontrib><creatorcontrib>Kameda, Tomoshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurumida, Yoichi</au><au>Saito, Yutaka</au><au>Kameda, Tomoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting antibody affinity changes upon mutations by combining multiple predictors</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-11</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19533</spage><epage>19533</epage><pages>19533-19533</pages><artnum>19533</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Antibodies are proteins working in our immune system with high affinity and specificity for target antigens, making them excellent tools for both biotherapeutic and bioengineering applications. The prediction of antibody affinity changes upon mutations (
Δ
Δ
G
binding
) is important for antibody engineering. Numerous computational methods have been proposed based on different approaches including molecular mechanics and machine learning. However, the accuracy by each individual predictor is not enough for efficient antibody development. In this study, we develop a new prediction method by combining multiple predictors based on machine learning. Our method was tested on the SiPMAB database, evaluating the Pearson’s correlation coefficient between predicted and experimental
Δ
Δ
G
binding
. Our method achieved higher accuracy (R = 0.69) than previous molecular mechanics or machine-learning based methods (R = 0.59) and the previous method using the average of multiple predictors (R = 0.64). Feature importance analysis indicated that the improved accuracy was obtained by combining predictors with different importance, which have different protocols for calculating energies and for generating mutant and unbound state structures. This study demonstrates that machine learning is a powerful framework for combining different approaches to predict antibody affinity changes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33177627</pmid><doi>10.1038/s41598-020-76369-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-11, Vol.10 (1), p.19533-19533, Article 19533 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7658247 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/114/469 631/114/663 Accuracy Affinity Antibodies Antibodies - chemistry Antibodies - genetics Antibody Affinity - genetics Antigens Computational Biology - methods Computer applications Correlation coefficient Databases as Topic Humanities and Social Sciences Immune system Learning algorithms Machine Learning multidisciplinary Mutation Science Science (multidisciplinary) Vascular Endothelial Growth Factor A - immunology |
title | Predicting antibody affinity changes upon mutations by combining multiple predictors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20antibody%20affinity%20changes%20upon%20mutations%20by%20combining%20multiple%20predictors&rft.jtitle=Scientific%20reports&rft.au=Kurumida,%20Yoichi&rft.date=2020-11-11&rft.volume=10&rft.issue=1&rft.spage=19533&rft.epage=19533&rft.pages=19533-19533&rft.artnum=19533&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76369-8&rft_dat=%3Cproquest_pubme%3E2460085913%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471558782&rft_id=info:pmid/33177627&rfr_iscdi=true |