Predicting antibody affinity changes upon mutations by combining multiple predictors

Antibodies are proteins working in our immune system with high affinity and specificity for target antigens, making them excellent tools for both biotherapeutic and bioengineering applications. The prediction of antibody affinity changes upon mutations ( Δ Δ G binding ) is important for antibody eng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-11, Vol.10 (1), p.19533-19533, Article 19533
Hauptverfasser: Kurumida, Yoichi, Saito, Yutaka, Kameda, Tomoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibodies are proteins working in our immune system with high affinity and specificity for target antigens, making them excellent tools for both biotherapeutic and bioengineering applications. The prediction of antibody affinity changes upon mutations ( Δ Δ G binding ) is important for antibody engineering. Numerous computational methods have been proposed based on different approaches including molecular mechanics and machine learning. However, the accuracy by each individual predictor is not enough for efficient antibody development. In this study, we develop a new prediction method by combining multiple predictors based on machine learning. Our method was tested on the SiPMAB database, evaluating the Pearson’s correlation coefficient between predicted and experimental Δ Δ G binding . Our method achieved higher accuracy (R = 0.69) than previous molecular mechanics or machine-learning based methods (R = 0.59) and the previous method using the average of multiple predictors (R = 0.64). Feature importance analysis indicated that the improved accuracy was obtained by combining predictors with different importance, which have different protocols for calculating energies and for generating mutant and unbound state structures. This study demonstrates that machine learning is a powerful framework for combining different approaches to predict antibody affinity changes.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-76369-8