Possible Involvement of a Tetrathionate Reductase Homolog in Dissimilatory Arsenate Reduction by Anaeromyxobacter sp. Strain PSR-1

sp. strain PSR-1, a dissimilatory arsenate [As(V)]-reducing bacterium, can utilize As(V) as a terminal electron acceptor for anaerobic respiration. A previous draft genome analysis revealed that strain PSR-1 lacks typical respiratory As(V) reductase genes ( ), which suggested the involvement of anot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2020-11, Vol.86 (23)
Hauptverfasser: Muramatsu, Fumika, Tonomura, Mimori, Yamada, Mikina, Kasahara, Yasuhiro, Yamamura, Shigeki, Iino, Takao, Amachi, Seigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:sp. strain PSR-1, a dissimilatory arsenate [As(V)]-reducing bacterium, can utilize As(V) as a terminal electron acceptor for anaerobic respiration. A previous draft genome analysis revealed that strain PSR-1 lacks typical respiratory As(V) reductase genes ( ), which suggested the involvement of another protein in As(V) respiration. Dissimilatory As(V) reductase activity of strain PSR-1 was induced under As(V)-respiring conditions and was localized predominantly in the periplasmic fraction. The activity was visualized by partially denaturing gel electrophoresis, and liquid chromatography-tandem mass spectrometry analysis identified proteins involved in the active band. Among these proteins, a protein annotated as molybdopterin-dependent oxidoreductase (PSR1_00330) exhibited the highest sequence coverage, 76%. Phylogenetic analysis revealed that this protein was a homolog of tetrathionate reductase catalytic subunit TtrA. However, the crude extract of strain PSR-1 did not show significant tetrathionate reductase enzyme activity. Comparative proteomic analysis revealed that the protein PSR1_00330 and a homolog of tetrathionate reductase electron transfer subunit TtrB (PSR1_00329) were expressed abundantly and specifically under As(V)-respiring conditions, respectively. The genes encoding PSR1_00330 and PSR1_00329 formed an operon-like structure along with a gene encoding a -type cytochrome ( ), and their transcription was upregulated under As(V)-respiring conditions. These results suggest that the protein PSR1_00330, which lacks tetrathionate reductase activity, functions as a dissimilatory As(V) reductase in strain PSR-1. Considering the wide distribution of TtrA homologs among bacteria and archaea, they may play a hitherto unknown role along with conventional respiratory As(V) reductase (Arr) in the biogeochemical cycling of arsenic in nature. Dissimilatory As(V)-reducing prokaryotes play significant roles in arsenic release and contamination in groundwater and threaten the health of people worldwide. Generally, such prokaryotes reduce As(V) by means of a respiratory As(V) reductase designated Arr. However, some dissimilatory As(V)-reducing prokaryotes such as sp. strain PSR-1 lack genes encoding Arr, suggesting the involvement of other protein in As(V) reduction. In this study, using multiple proteomic and transcriptional analyses, it was found that the dissimilatory As(V) reductase of strain PSR-1 was a protein closely related to the tetrathionate reducta
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.00829-20