A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood—Meat Eating Alternative Trial (SWAP-MEAT)
Despite the rising popularity of plant-based alternative meats, there is limited evidence of the health effects of these products. We aimed to compare the effect of consuming plant-based alternative meat (Plant) as opposed to animal meat (Animal) on health factors. The primary outcome was fasting se...
Gespeichert in:
Veröffentlicht in: | The American journal of clinical nutrition 2020-11, Vol.112 (5), p.1188-1199 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite the rising popularity of plant-based alternative meats, there is limited evidence of the health effects of these products.
We aimed to compare the effect of consuming plant-based alternative meat (Plant) as opposed to animal meat (Animal) on health factors. The primary outcome was fasting serum trimethylamine-N-oxide (TMAO). Secondary outcomes included fasting insulin-like growth factor 1, lipids, glucose, insulin, blood pressure, and weight.
SWAP-MEAT (The Study With Appetizing Plantfood—Meat Eating Alternatives Trial) was a single-site, randomized crossover trial with no washout period. Participants received Plant and Animal products, dietary counseling, lab assessments, microbiome assessments (16S), and anthropometric measurements. Participants were instructed to consume ≥2 servings/d of Plant compared with Animal for 8 wk each, while keeping all other foods and beverages as similar as possible between the 2 phases.
The 36 participants who provided complete data for both crossover phases included 67% women, were 69% Caucasian, had a mean ± SD age 50 ± 14 y, and BMI 28 ± 5 kg/m2. Mean ± SD servings per day were not different by intervention sequence: 2.5 ± 0.6 compared with 2.6 ± 0.7 for Plant and Animal, respectively (P = 0.76). Mean ± SEM TMAO concentrations were significantly lower overall for Plant (2.7 ± 0.3) than for Animal (4.7 ± 0.9) (P = 0.012), but a significant order effect was observed (P = 0.023). TMAO concentrations were significantly lower for Plant among the n = 18 who received Plant second (2.9 ± 0.4 compared with 6.4 ± 1.5, Plant compared with Animal, P = 0.007), but not for the n = 18 who received Plant first (2.5 ± 0.4 compared with 3.0 ± 0.6, Plant compared with Animal, P = 0.23). Exploratory analyses of the microbiome failed to reveal possible responder compared with nonresponder factors. Mean ± SEM LDL-cholesterol concentrations (109.9 ± 4.5 compared with 120.7 ± 4.5 mg/dL, P = 0.002) and weight (78.7 ± 3.0 compared with 79.6 ± 3.0 kg, P < 0.001) were lower during the Plant phase.
Among generally healthy adults, contrasting Plant with Animal intake, while keeping all other dietary components similar, the Plant products improved several cardiovascular disease risk factors, including TMAO; there were no adverse effects on risk factors from the Plant products. This trial was registered at clinicaltrials.gov as NCT03718988. |
---|---|
ISSN: | 0002-9165 1938-3207 |
DOI: | 10.1093/ajcn/nqaa203 |