Preparation of Ultrafine Fly Ash-Based Superhydrophobic Composite Coating and Its Application to Foam Concrete
The waterproof and thermal insulation property of foamed concrete is very important. In this study, the ultrafine fly ash (UFA)-based superhydrophobic composite coating was applied onto foam concrete. The UFA-based base coating that closely adhered to the concrete initially improved the waterproofne...
Gespeichert in:
Veröffentlicht in: | Polymers 2020-09, Vol.12 (10), p.2187 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The waterproof and thermal insulation property of foamed concrete is very important. In this study, the ultrafine fly ash (UFA)-based superhydrophobic composite coating was applied onto foam concrete. The UFA-based base coating that closely adhered to the concrete initially improved the waterproofness of the test block, and the silane coupling agent-modified UFA-based surface coating further achieved superhydrophobicity. The UFA on the coating surface and the asperities on the surface jointly formed a lotus leaf-like rough micro–nanostructure. The 154.34° water drop contact angle and 2.41° sliding angle on No. 5 coating were reached, indicating that it was a superhydrophobic surface. The water absorption ratios of the composite coating block were 1.87% and 16.6% at 4 h and 7 days, which were reduced by 97% and 75% in comparison with the original foam concrete. The compressive strength and heat conductivity coefficient after soaking for 4 h of the composite coating block were higher than 4.0 MPa and 0.225 W·m−1·K−1, respectively. The UFA-based superhydrophobic composite coating proposed in this study and applied onto foam concrete is simple and cheap, requires no precise instrument, and can be applied in a large area. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym12102187 |