Clinical trial cohort selection based on multi-level rule-based natural language processing system

Abstract Objective Identifying patients who meet selection criteria for clinical trials is typically challenging and time-consuming. In this article, we describe our clinical natural language processing (NLP) system to automatically assess patients’ eligibility based on their longitudinal medical re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Medical Informatics Association : JAMIA 2019-11, Vol.26 (11), p.1218-1226
Hauptverfasser: Chen, Long, Gu, Yu, Ji, Xin, Lou, Chao, Sun, Zhiyong, Li, Haodan, Gao, Yuan, Huang, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Objective Identifying patients who meet selection criteria for clinical trials is typically challenging and time-consuming. In this article, we describe our clinical natural language processing (NLP) system to automatically assess patients’ eligibility based on their longitudinal medical records. This work was part of the 2018 National NLP Clinical Challenges (n2c2) Shared-Task and Workshop on Cohort Selection for Clinical Trials. Materials and Methods The authors developed an integrated rule-based clinical NLP system which employs a generic rule-based framework plugged in with lexical-, syntactic- and meta-level, task-specific knowledge inputs. In addition, the authors also implemented and evaluated a general clinical NLP (cNLP) system which is built with the Unified Medical Language System and Unstructured Information Management Architecture. Results and Discussion The systems were evaluated as part of the 2018 n2c2-1 challenge, and authors’ rule-based system obtained an F-measure of 0.9028, ranking fourth at the challenge and had less than 1% difference from the best system. While the general cNLP system didn’t achieve performance as good as the rule-based system, it did establish its own advantages and potential in extracting clinical concepts. Conclusion Our results indicate that a well-designed rule-based clinical NLP system is capable of achieving good performance on cohort selection even with a small training data set. In addition, the investigation of a Unified Medical Language System-based general cNLP system suggests that a hybrid system combining these 2 approaches is promising to surpass the state-of-the-art performance.
ISSN:1067-5027
1527-974X
DOI:10.1093/jamia/ocz109