Predicting individual physiologically acceptable states at discharge from a pediatric intensive care unit

Quantify physiologically acceptable PICU-discharge vital signs and develop machine learning models to predict these values for individual patients throughout their PICU episode. EMR data from 7256 survivor PICU episodes (5632 patients) collected between 2009 and 2017 at Children's Hospital Los...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Medical Informatics Association : JAMIA 2018-12, Vol.25 (12), p.1600-1607
Hauptverfasser: Carlin, Cameron S, Ho, Long V, Ledbetter, David R, Aczon, Melissa D, Wetzel, Randall C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantify physiologically acceptable PICU-discharge vital signs and develop machine learning models to predict these values for individual patients throughout their PICU episode. EMR data from 7256 survivor PICU episodes (5632 patients) collected between 2009 and 2017 at Children's Hospital Los Angeles was analyzed. Each episode contained 375 variables representing physiology, labs, interventions, and drugs. Between medical and physical discharge, when clinicians determined the patient was ready for ICU discharge, they were assumed to be in a physiologically acceptable state space (PASS) for discharge. Each patient's heart rate, systolic blood pressure, diastolic blood pressure in the PASS window were measured and compared to age-normal values, regression-quantified PASS predictions, and recurrent neural network (RNN) PASS predictions made 12 hours after PICU admission. Mean absolute errors (MAEs) between individual PASS values and age-normal values (HR: 21.0 bpm; SBP: 10.8 mm Hg; DBP: 10.6 mm Hg) were greater (p 
ISSN:1067-5027
1527-974X
DOI:10.1093/jamia/ocy122