A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution

Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature ecology & evolution 2022-07, Vol.6 (7), p.1007-1023
Hauptverfasser: Grau-Bové, Xavier, Navarrete, Cristina, Chiva, Cristina, Pribasnig, Thomas, Antó, Meritxell, Torruella, Guifré, Galindo, Luis Javier, Lang, Bernd Franz, Moreira, David, López-Garcia, Purificación, Ruiz-Trillo, Iñaki, Schleper, Christa, Sabidó, Eduard, Sebé-Pedrós, Arnau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 7
container_start_page 1007
container_title Nature ecology & evolution
container_volume 6
creator Grau-Bové, Xavier
Navarrete, Cristina
Chiva, Cristina
Pribasnig, Thomas
Antó, Meritxell
Torruella, Guifré
Galindo, Luis Javier
Lang, Bernd Franz
Moreira, David
López-Garcia, Purificación
Ruiz-Trillo, Iñaki
Schleper, Christa
Sabidó, Eduard
Sebé-Pedrós, Arnau
description Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (for example, methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites. Comparative genomics and proteomics of archaea and eukaryotes are used to explore the evolutionary history of eukaryotic chromatin, including modifications, catalytic functions and relationship with genomic parasites.
doi_str_mv 10.1038/s41559-022-01771-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685822739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-2ebab1bd483e2e4401c13e98b5f3fd7baca0a229ca0fb36c414e942c93e7b3193</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq2qVUHAH-ihitRLewj4K_64VFqhFpAW9QISN8vxTnZDE3uxk5X493UI34eexvY88854XoS-EHxMMFMniZOq0iWmtMRESlKKD2ifMi1LxvjNx1fnPXSU0i3GE1ZpIT6jPVYJhbVW--hyUWw3911Yg4ehdYX1q2IbwwChz7cILvg0xNENbfBFaAoY_9p4HybUbWLo7dD6AnahGyfiEH1qbJfg6DEeoOvfv65Oz8vln7OL08WydBVWQ0mhtjWpV1wxoMA5Jo4w0KquGtasZG2dxZZSnUNTM-E44aA5dZqBrBnR7AD9nHW3Y93DyoEfou3MNrZ9ns4E25q3Gd9uzDrsjBSEYcazwI9ZYPOu7HyxNNNbXjHP22I7ktnvj81iuBshDaZvk4Ousx7CmAwVshJYcCUz-u0dehvG6PMqMqUqRalk0_R0plwMKUVonicg2Ezmmtlck801D-YakYu-vv7yc8mTlRlgM5Byyq8hvvT-j-w_sayxEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685822739</pqid></control><display><type>article</type><title>A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Grau-Bové, Xavier ; Navarrete, Cristina ; Chiva, Cristina ; Pribasnig, Thomas ; Antó, Meritxell ; Torruella, Guifré ; Galindo, Luis Javier ; Lang, Bernd Franz ; Moreira, David ; López-Garcia, Purificación ; Ruiz-Trillo, Iñaki ; Schleper, Christa ; Sabidó, Eduard ; Sebé-Pedrós, Arnau</creator><creatorcontrib>Grau-Bové, Xavier ; Navarrete, Cristina ; Chiva, Cristina ; Pribasnig, Thomas ; Antó, Meritxell ; Torruella, Guifré ; Galindo, Luis Javier ; Lang, Bernd Franz ; Moreira, David ; López-Garcia, Purificación ; Ruiz-Trillo, Iñaki ; Schleper, Christa ; Sabidó, Eduard ; Sebé-Pedrós, Arnau</creatorcontrib><description>Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (for example, methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites. Comparative genomics and proteomics of archaea and eukaryotes are used to explore the evolutionary history of eukaryotic chromatin, including modifications, catalytic functions and relationship with genomic parasites.</description><identifier>ISSN: 2397-334X</identifier><identifier>EISSN: 2397-334X</identifier><identifier>DOI: 10.1038/s41559-022-01771-6</identifier><identifier>PMID: 35680998</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/181 ; 631/208/176 ; 631/208/212/748 ; 631/326/26 ; 82/58 ; Archaea ; Biological and Physical Anthropology ; Biomedical and Life Sciences ; Chromatin ; Ecology ; Eukaryotes ; Evolution ; Evolutionary Biology ; Evolutionary genetics ; Genomics ; Histones ; Life Sciences ; Paleontology ; Parasites ; Phylogenetics ; Phylogeny ; Post-translation ; Proteomics ; Zoology</subject><ispartof>Nature ecology &amp; evolution, 2022-07, Vol.6 (7), p.1007-1023</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-2ebab1bd483e2e4401c13e98b5f3fd7baca0a229ca0fb36c414e942c93e7b3193</citedby><cites>FETCH-LOGICAL-c508t-2ebab1bd483e2e4401c13e98b5f3fd7baca0a229ca0fb36c414e942c93e7b3193</cites><orcidid>0000-0002-2594-7327 ; 0000-0002-9896-9746 ; 0000-0002-0927-0651 ; 0000-0003-1978-5824 ; 0000-0002-1918-2735 ; 0000-0002-6534-4758 ; 0000-0001-8150-6203 ; 0000-0003-3642-3200 ; 0000-0001-6506-7714 ; 0000-0002-4431-3784 ; 0000-0001-6547-5304 ; 0000-0002-2064-5354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41559-022-01771-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41559-022-01771-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35680998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03847593$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grau-Bové, Xavier</creatorcontrib><creatorcontrib>Navarrete, Cristina</creatorcontrib><creatorcontrib>Chiva, Cristina</creatorcontrib><creatorcontrib>Pribasnig, Thomas</creatorcontrib><creatorcontrib>Antó, Meritxell</creatorcontrib><creatorcontrib>Torruella, Guifré</creatorcontrib><creatorcontrib>Galindo, Luis Javier</creatorcontrib><creatorcontrib>Lang, Bernd Franz</creatorcontrib><creatorcontrib>Moreira, David</creatorcontrib><creatorcontrib>López-Garcia, Purificación</creatorcontrib><creatorcontrib>Ruiz-Trillo, Iñaki</creatorcontrib><creatorcontrib>Schleper, Christa</creatorcontrib><creatorcontrib>Sabidó, Eduard</creatorcontrib><creatorcontrib>Sebé-Pedrós, Arnau</creatorcontrib><title>A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution</title><title>Nature ecology &amp; evolution</title><addtitle>Nat Ecol Evol</addtitle><addtitle>Nat Ecol Evol</addtitle><description>Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (for example, methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites. Comparative genomics and proteomics of archaea and eukaryotes are used to explore the evolutionary history of eukaryotic chromatin, including modifications, catalytic functions and relationship with genomic parasites.</description><subject>631/114</subject><subject>631/181</subject><subject>631/208/176</subject><subject>631/208/212/748</subject><subject>631/326/26</subject><subject>82/58</subject><subject>Archaea</subject><subject>Biological and Physical Anthropology</subject><subject>Biomedical and Life Sciences</subject><subject>Chromatin</subject><subject>Ecology</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Evolutionary Biology</subject><subject>Evolutionary genetics</subject><subject>Genomics</subject><subject>Histones</subject><subject>Life Sciences</subject><subject>Paleontology</subject><subject>Parasites</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Post-translation</subject><subject>Proteomics</subject><subject>Zoology</subject><issn>2397-334X</issn><issn>2397-334X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1P3DAQhq2qVUHAH-ihitRLewj4K_64VFqhFpAW9QISN8vxTnZDE3uxk5X493UI34eexvY88854XoS-EHxMMFMniZOq0iWmtMRESlKKD2ifMi1LxvjNx1fnPXSU0i3GE1ZpIT6jPVYJhbVW--hyUWw3911Yg4ehdYX1q2IbwwChz7cILvg0xNENbfBFaAoY_9p4HybUbWLo7dD6AnahGyfiEH1qbJfg6DEeoOvfv65Oz8vln7OL08WydBVWQ0mhtjWpV1wxoMA5Jo4w0KquGtasZG2dxZZSnUNTM-E44aA5dZqBrBnR7AD9nHW3Y93DyoEfou3MNrZ9ns4E25q3Gd9uzDrsjBSEYcazwI9ZYPOu7HyxNNNbXjHP22I7ktnvj81iuBshDaZvk4Ousx7CmAwVshJYcCUz-u0dehvG6PMqMqUqRalk0_R0plwMKUVonicg2Ezmmtlck801D-YakYu-vv7yc8mTlRlgM5Byyq8hvvT-j-w_sayxEQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Grau-Bové, Xavier</creator><creator>Navarrete, Cristina</creator><creator>Chiva, Cristina</creator><creator>Pribasnig, Thomas</creator><creator>Antó, Meritxell</creator><creator>Torruella, Guifré</creator><creator>Galindo, Luis Javier</creator><creator>Lang, Bernd Franz</creator><creator>Moreira, David</creator><creator>López-Garcia, Purificación</creator><creator>Ruiz-Trillo, Iñaki</creator><creator>Schleper, Christa</creator><creator>Sabidó, Eduard</creator><creator>Sebé-Pedrós, Arnau</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2594-7327</orcidid><orcidid>https://orcid.org/0000-0002-9896-9746</orcidid><orcidid>https://orcid.org/0000-0002-0927-0651</orcidid><orcidid>https://orcid.org/0000-0003-1978-5824</orcidid><orcidid>https://orcid.org/0000-0002-1918-2735</orcidid><orcidid>https://orcid.org/0000-0002-6534-4758</orcidid><orcidid>https://orcid.org/0000-0001-8150-6203</orcidid><orcidid>https://orcid.org/0000-0003-3642-3200</orcidid><orcidid>https://orcid.org/0000-0001-6506-7714</orcidid><orcidid>https://orcid.org/0000-0002-4431-3784</orcidid><orcidid>https://orcid.org/0000-0001-6547-5304</orcidid><orcidid>https://orcid.org/0000-0002-2064-5354</orcidid></search><sort><creationdate>20220701</creationdate><title>A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution</title><author>Grau-Bové, Xavier ; Navarrete, Cristina ; Chiva, Cristina ; Pribasnig, Thomas ; Antó, Meritxell ; Torruella, Guifré ; Galindo, Luis Javier ; Lang, Bernd Franz ; Moreira, David ; López-Garcia, Purificación ; Ruiz-Trillo, Iñaki ; Schleper, Christa ; Sabidó, Eduard ; Sebé-Pedrós, Arnau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-2ebab1bd483e2e4401c13e98b5f3fd7baca0a229ca0fb36c414e942c93e7b3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/114</topic><topic>631/181</topic><topic>631/208/176</topic><topic>631/208/212/748</topic><topic>631/326/26</topic><topic>82/58</topic><topic>Archaea</topic><topic>Biological and Physical Anthropology</topic><topic>Biomedical and Life Sciences</topic><topic>Chromatin</topic><topic>Ecology</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Evolutionary Biology</topic><topic>Evolutionary genetics</topic><topic>Genomics</topic><topic>Histones</topic><topic>Life Sciences</topic><topic>Paleontology</topic><topic>Parasites</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Post-translation</topic><topic>Proteomics</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grau-Bové, Xavier</creatorcontrib><creatorcontrib>Navarrete, Cristina</creatorcontrib><creatorcontrib>Chiva, Cristina</creatorcontrib><creatorcontrib>Pribasnig, Thomas</creatorcontrib><creatorcontrib>Antó, Meritxell</creatorcontrib><creatorcontrib>Torruella, Guifré</creatorcontrib><creatorcontrib>Galindo, Luis Javier</creatorcontrib><creatorcontrib>Lang, Bernd Franz</creatorcontrib><creatorcontrib>Moreira, David</creatorcontrib><creatorcontrib>López-Garcia, Purificación</creatorcontrib><creatorcontrib>Ruiz-Trillo, Iñaki</creatorcontrib><creatorcontrib>Schleper, Christa</creatorcontrib><creatorcontrib>Sabidó, Eduard</creatorcontrib><creatorcontrib>Sebé-Pedrós, Arnau</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature ecology &amp; evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grau-Bové, Xavier</au><au>Navarrete, Cristina</au><au>Chiva, Cristina</au><au>Pribasnig, Thomas</au><au>Antó, Meritxell</au><au>Torruella, Guifré</au><au>Galindo, Luis Javier</au><au>Lang, Bernd Franz</au><au>Moreira, David</au><au>López-Garcia, Purificación</au><au>Ruiz-Trillo, Iñaki</au><au>Schleper, Christa</au><au>Sabidó, Eduard</au><au>Sebé-Pedrós, Arnau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution</atitle><jtitle>Nature ecology &amp; evolution</jtitle><stitle>Nat Ecol Evol</stitle><addtitle>Nat Ecol Evol</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>6</volume><issue>7</issue><spage>1007</spage><epage>1023</epage><pages>1007-1023</pages><issn>2397-334X</issn><eissn>2397-334X</eissn><abstract>Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (for example, methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites. Comparative genomics and proteomics of archaea and eukaryotes are used to explore the evolutionary history of eukaryotic chromatin, including modifications, catalytic functions and relationship with genomic parasites.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35680998</pmid><doi>10.1038/s41559-022-01771-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2594-7327</orcidid><orcidid>https://orcid.org/0000-0002-9896-9746</orcidid><orcidid>https://orcid.org/0000-0002-0927-0651</orcidid><orcidid>https://orcid.org/0000-0003-1978-5824</orcidid><orcidid>https://orcid.org/0000-0002-1918-2735</orcidid><orcidid>https://orcid.org/0000-0002-6534-4758</orcidid><orcidid>https://orcid.org/0000-0001-8150-6203</orcidid><orcidid>https://orcid.org/0000-0003-3642-3200</orcidid><orcidid>https://orcid.org/0000-0001-6506-7714</orcidid><orcidid>https://orcid.org/0000-0002-4431-3784</orcidid><orcidid>https://orcid.org/0000-0001-6547-5304</orcidid><orcidid>https://orcid.org/0000-0002-2064-5354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-334X
ispartof Nature ecology & evolution, 2022-07, Vol.6 (7), p.1007-1023
issn 2397-334X
2397-334X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613034
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/114
631/181
631/208/176
631/208/212/748
631/326/26
82/58
Archaea
Biological and Physical Anthropology
Biomedical and Life Sciences
Chromatin
Ecology
Eukaryotes
Evolution
Evolutionary Biology
Evolutionary genetics
Genomics
Histones
Life Sciences
Paleontology
Parasites
Phylogenetics
Phylogeny
Post-translation
Proteomics
Zoology
title A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phylogenetic%20and%20proteomic%20reconstruction%20of%20eukaryotic%20chromatin%20evolution&rft.jtitle=Nature%20ecology%20&%20evolution&rft.au=Grau-Bov%C3%A9,%20Xavier&rft.date=2022-07-01&rft.volume=6&rft.issue=7&rft.spage=1007&rft.epage=1023&rft.pages=1007-1023&rft.issn=2397-334X&rft.eissn=2397-334X&rft_id=info:doi/10.1038/s41559-022-01771-6&rft_dat=%3Cproquest_pubme%3E2685822739%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685822739&rft_id=info:pmid/35680998&rfr_iscdi=true