A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution

Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature ecology & evolution 2022-07, Vol.6 (7), p.1007-1023
Hauptverfasser: Grau-Bové, Xavier, Navarrete, Cristina, Chiva, Cristina, Pribasnig, Thomas, Antó, Meritxell, Torruella, Guifré, Galindo, Luis Javier, Lang, Bernd Franz, Moreira, David, López-Garcia, Purificación, Ruiz-Trillo, Iñaki, Schleper, Christa, Sabidó, Eduard, Sebé-Pedrós, Arnau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (for example, methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites. Comparative genomics and proteomics of archaea and eukaryotes are used to explore the evolutionary history of eukaryotic chromatin, including modifications, catalytic functions and relationship with genomic parasites.
ISSN:2397-334X
2397-334X
DOI:10.1038/s41559-022-01771-6