Porous Metal–Organic Polyhedra: Morphology, Porosity, and Guest Binding

Designing porous materials which can selectively adsorb CO2 or CH4 is an important environmental and industrial goal which requires an understanding of the host–guest interactions involved at the atomic scale. Metal–organic polyhedra (MOPs) showing permanent porosity upon desolvation are rarely obse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2020-11, Vol.59 (21), p.15646-15658
Hauptverfasser: Argent, Stephen P, da Silva, Ivan, Greenaway, Alex, Savage, Mathew, Humby, Jack, Davies, Andrew J, Nowell, Harriott, Lewis, William, Manuel, Pascal, Tang, Chiu C, Blake, Alexander J, George, Michael W, Markevich, Alexander V, Besley, Elena, Yang, Sihai, Champness, Neil R, Schröder, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Designing porous materials which can selectively adsorb CO2 or CH4 is an important environmental and industrial goal which requires an understanding of the host–guest interactions involved at the atomic scale. Metal–organic polyhedra (MOPs) showing permanent porosity upon desolvation are rarely observed. We report a family of MOPs (Cu-1a, Cu-1b, Cu-2), which derive their permanent porosity from cavities between packed cages rather than from within the polyhedra. Thus, for Cu-1a, the void fraction outside the cages totals 56% with only 2% within. The relative stabilities of these MOP structures are rationalized by considering their weak nondirectional packing interactions using Hirshfeld surface analyses. The exceptional stability of Cu-1a enables a detailed structural investigation into the adsorption of CO2 and CH4 using in situ X-ray and neutron diffraction, coupled with DFT calculations. The primary binding sites for adsorbed CO2 and CH4 in Cu-1a are found to be the open metal sites and pockets defined by the faces of phenyl rings. More importantly, the structural analysis of a hydrated sample of Cu-1a reveals a strong hydrogen bond between the adsorbed CO2 molecule and the Cu­(II)-bound water molecule, shedding light on previous empirical and theoretical observations that partial hydration of metal−organic framework (MOF) materials containing open metal sites increases their uptake of CO2. The results of the crystallographic study on MOP–gas binding have been rationalized using DFT calculations, yielding individual binding energies for the various pore environments of Cu-1a.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.0c01935