Using CHADS2 and CHA2DS2-VASc scores for mortality prediction in patients with chronic kidney disease
Chronic kidney disease (CKD) is a public health issue and is associated with high morbidity and mortality. How to identify the high-risk CKD patients is very important to improve the long-term outcome. CHADS 2 and CHA2DS2-VASc scores are clinically useful scores to evaluate the risk of stroke in pat...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-11, Vol.10 (1), p.18942-18942, Article 18942 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18942 |
---|---|
container_issue | 1 |
container_start_page | 18942 |
container_title | Scientific reports |
container_volume | 10 |
creator | Hsu, Po-Chao Lee, Wen-Hsien Chen, Szu-Chia Tsai, Yi-Chun Chen, Ying-Chih Chu, Chun-Yuan Lin, Tsung-Hsien Voon, Wen-Chol Lai, Wen-Ter Sheu, Sheng-Hsiung Su, Ho-Ming |
description | Chronic kidney disease (CKD) is a public health issue and is associated with high morbidity and mortality. How to identify the high-risk CKD patients is very important to improve the long-term outcome. CHADS
2
and CHA2DS2-VASc scores are clinically useful scores to evaluate the risk of stroke in patients with atrial fibrillation. However, there was no literature discussing about the usefulness of CHADS
2
and CHA2DS2-VASc scores for cardiovascular (CV) and all-cause mortality prediction in CKD patients. This longitudinal study enrolled 437 patients with CKD. CHADS
2
and CHA2DS2-VASc scores were calculated for each patient. CV and all-cause mortality data were collected for long-term outcome prediction. The median follow-up to mortality was 91 (25th–75th percentile: 59–101) months. There were 66 CV mortality and 165 all-cause mortality. In addition to age and heart rate, CHADS
2
and CHA
2
DS
2
-VASc scores (both
P
value |
doi_str_mv | 10.1038/s41598-020-76098-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7609539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457691711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-2f1df578b3b446caf1e257f7021315aab2136518342160440e0cd33977401ccc3</originalsourceid><addsrcrecordid>eNp9kUtPGzEUhS0EahDkD3RlqRs2Q339GM9sKkUBSiWkLkLYWo7Hkxhm7GBPQPPv6zSoDxZ4c4_k7x4d-yD0GcglEFZ9TRxEXRWEkkKWJKvxCJ1SwkVBGaXH_-gJmqb0SPIRtOZQf0ITxoDzkstTZJfJ-TWe386uFhRr3-wlzbp4mC0MTiZEm3AbIu5DHHTnhhFvo22cGVzw2Hm81YOzfkj41Q0bbDYxeGfwk2u8HXHjktXJnqOTVnfJTt_mGVreXN_Pb4u7n99_zGd3heEChoK20LRCViu2yvGMbsFSIVtJKDAQWq_yLAVUjFMoCefEEtMwVkvJCRhj2Bn6dvDd7la9bUzOFXWnttH1Oo4qaKf-v_Fuo9bhRe2_ULA6G1y8GcTwvLNpUL1Lxnad9jbskqJcyLIGCZDRL-_Qx7CLPj8vUxIEg5qWmaIHysSQUrTtnzBA1L5IdShS5SJ_p6jUmJfYYSll2K9t_Gv9wdYvXnGeJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471531926</pqid></control><display><type>article</type><title>Using CHADS2 and CHA2DS2-VASc scores for mortality prediction in patients with chronic kidney disease</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hsu, Po-Chao ; Lee, Wen-Hsien ; Chen, Szu-Chia ; Tsai, Yi-Chun ; Chen, Ying-Chih ; Chu, Chun-Yuan ; Lin, Tsung-Hsien ; Voon, Wen-Chol ; Lai, Wen-Ter ; Sheu, Sheng-Hsiung ; Su, Ho-Ming</creator><creatorcontrib>Hsu, Po-Chao ; Lee, Wen-Hsien ; Chen, Szu-Chia ; Tsai, Yi-Chun ; Chen, Ying-Chih ; Chu, Chun-Yuan ; Lin, Tsung-Hsien ; Voon, Wen-Chol ; Lai, Wen-Ter ; Sheu, Sheng-Hsiung ; Su, Ho-Ming</creatorcontrib><description>Chronic kidney disease (CKD) is a public health issue and is associated with high morbidity and mortality. How to identify the high-risk CKD patients is very important to improve the long-term outcome. CHADS
2
and CHA2DS2-VASc scores are clinically useful scores to evaluate the risk of stroke in patients with atrial fibrillation. However, there was no literature discussing about the usefulness of CHADS
2
and CHA2DS2-VASc scores for cardiovascular (CV) and all-cause mortality prediction in CKD patients. This longitudinal study enrolled 437 patients with CKD. CHADS
2
and CHA2DS2-VASc scores were calculated for each patient. CV and all-cause mortality data were collected for long-term outcome prediction. The median follow-up to mortality was 91 (25th–75th percentile: 59–101) months. There were 66 CV mortality and 165 all-cause mortality. In addition to age and heart rate, CHADS
2
and CHA
2
DS
2
-VASc scores (both
P
value < 0.001) were significant predictors of CV and all-cause mortality in the multivariate analysis. Besides, in direct comparison of multivariate model, basic model + CHA
2
DS
2
-VASc score had a better additive predictive value for all-cause mortality than basic model + CHADS
2
score (
P
= 0.031). In conclusion, our study showed both of CHADS
2
and CHA
2
DS
2
-VASc scores were significant predictors for long-term CV and all-cause mortality in CKD patients and CHA
2
DS
2
-VASc score had a better predictive value than CHADS
2
score for all-cause mortality in direct comparison of multivariate model. Therefore, using CHADS
2
and CHA
2
DS
2
-VASc scores to screen CKD patients may be helpful in identifying the high-risk group with increased mortality.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76098-y</identifier><identifier>PMID: 33144647</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/4022/1585 ; 692/53/2422 ; 692/53/2423 ; 692/699/1585 ; Cardiovascular diseases ; Fibrillation ; Heart rate ; Humanities and Social Sciences ; Kidney diseases ; Morbidity ; Mortality ; multidisciplinary ; Multivariate analysis ; Predictions ; Public health ; Risk groups ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.18942-18942, Article 18942</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-2f1df578b3b446caf1e257f7021315aab2136518342160440e0cd33977401ccc3</citedby><cites>FETCH-LOGICAL-c451t-2f1df578b3b446caf1e257f7021315aab2136518342160440e0cd33977401ccc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609539/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609539/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids></links><search><creatorcontrib>Hsu, Po-Chao</creatorcontrib><creatorcontrib>Lee, Wen-Hsien</creatorcontrib><creatorcontrib>Chen, Szu-Chia</creatorcontrib><creatorcontrib>Tsai, Yi-Chun</creatorcontrib><creatorcontrib>Chen, Ying-Chih</creatorcontrib><creatorcontrib>Chu, Chun-Yuan</creatorcontrib><creatorcontrib>Lin, Tsung-Hsien</creatorcontrib><creatorcontrib>Voon, Wen-Chol</creatorcontrib><creatorcontrib>Lai, Wen-Ter</creatorcontrib><creatorcontrib>Sheu, Sheng-Hsiung</creatorcontrib><creatorcontrib>Su, Ho-Ming</creatorcontrib><title>Using CHADS2 and CHA2DS2-VASc scores for mortality prediction in patients with chronic kidney disease</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Chronic kidney disease (CKD) is a public health issue and is associated with high morbidity and mortality. How to identify the high-risk CKD patients is very important to improve the long-term outcome. CHADS
2
and CHA2DS2-VASc scores are clinically useful scores to evaluate the risk of stroke in patients with atrial fibrillation. However, there was no literature discussing about the usefulness of CHADS
2
and CHA2DS2-VASc scores for cardiovascular (CV) and all-cause mortality prediction in CKD patients. This longitudinal study enrolled 437 patients with CKD. CHADS
2
and CHA2DS2-VASc scores were calculated for each patient. CV and all-cause mortality data were collected for long-term outcome prediction. The median follow-up to mortality was 91 (25th–75th percentile: 59–101) months. There were 66 CV mortality and 165 all-cause mortality. In addition to age and heart rate, CHADS
2
and CHA
2
DS
2
-VASc scores (both
P
value < 0.001) were significant predictors of CV and all-cause mortality in the multivariate analysis. Besides, in direct comparison of multivariate model, basic model + CHA
2
DS
2
-VASc score had a better additive predictive value for all-cause mortality than basic model + CHADS
2
score (
P
= 0.031). In conclusion, our study showed both of CHADS
2
and CHA
2
DS
2
-VASc scores were significant predictors for long-term CV and all-cause mortality in CKD patients and CHA
2
DS
2
-VASc score had a better predictive value than CHADS
2
score for all-cause mortality in direct comparison of multivariate model. Therefore, using CHADS
2
and CHA
2
DS
2
-VASc scores to screen CKD patients may be helpful in identifying the high-risk group with increased mortality.</description><subject>692/4022/1585</subject><subject>692/53/2422</subject><subject>692/53/2423</subject><subject>692/699/1585</subject><subject>Cardiovascular diseases</subject><subject>Fibrillation</subject><subject>Heart rate</subject><subject>Humanities and Social Sciences</subject><subject>Kidney diseases</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>multidisciplinary</subject><subject>Multivariate analysis</subject><subject>Predictions</subject><subject>Public health</subject><subject>Risk groups</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtPGzEUhS0EahDkD3RlqRs2Q339GM9sKkUBSiWkLkLYWo7Hkxhm7GBPQPPv6zSoDxZ4c4_k7x4d-yD0GcglEFZ9TRxEXRWEkkKWJKvxCJ1SwkVBGaXH_-gJmqb0SPIRtOZQf0ITxoDzkstTZJfJ-TWe386uFhRr3-wlzbp4mC0MTiZEm3AbIu5DHHTnhhFvo22cGVzw2Hm81YOzfkj41Q0bbDYxeGfwk2u8HXHjktXJnqOTVnfJTt_mGVreXN_Pb4u7n99_zGd3heEChoK20LRCViu2yvGMbsFSIVtJKDAQWq_yLAVUjFMoCefEEtMwVkvJCRhj2Bn6dvDd7la9bUzOFXWnttH1Oo4qaKf-v_Fuo9bhRe2_ULA6G1y8GcTwvLNpUL1Lxnad9jbskqJcyLIGCZDRL-_Qx7CLPj8vUxIEg5qWmaIHysSQUrTtnzBA1L5IdShS5SJ_p6jUmJfYYSll2K9t_Gv9wdYvXnGeJA</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Hsu, Po-Chao</creator><creator>Lee, Wen-Hsien</creator><creator>Chen, Szu-Chia</creator><creator>Tsai, Yi-Chun</creator><creator>Chen, Ying-Chih</creator><creator>Chu, Chun-Yuan</creator><creator>Lin, Tsung-Hsien</creator><creator>Voon, Wen-Chol</creator><creator>Lai, Wen-Ter</creator><creator>Sheu, Sheng-Hsiung</creator><creator>Su, Ho-Ming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201103</creationdate><title>Using CHADS2 and CHA2DS2-VASc scores for mortality prediction in patients with chronic kidney disease</title><author>Hsu, Po-Chao ; Lee, Wen-Hsien ; Chen, Szu-Chia ; Tsai, Yi-Chun ; Chen, Ying-Chih ; Chu, Chun-Yuan ; Lin, Tsung-Hsien ; Voon, Wen-Chol ; Lai, Wen-Ter ; Sheu, Sheng-Hsiung ; Su, Ho-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-2f1df578b3b446caf1e257f7021315aab2136518342160440e0cd33977401ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/4022/1585</topic><topic>692/53/2422</topic><topic>692/53/2423</topic><topic>692/699/1585</topic><topic>Cardiovascular diseases</topic><topic>Fibrillation</topic><topic>Heart rate</topic><topic>Humanities and Social Sciences</topic><topic>Kidney diseases</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>multidisciplinary</topic><topic>Multivariate analysis</topic><topic>Predictions</topic><topic>Public health</topic><topic>Risk groups</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Po-Chao</creatorcontrib><creatorcontrib>Lee, Wen-Hsien</creatorcontrib><creatorcontrib>Chen, Szu-Chia</creatorcontrib><creatorcontrib>Tsai, Yi-Chun</creatorcontrib><creatorcontrib>Chen, Ying-Chih</creatorcontrib><creatorcontrib>Chu, Chun-Yuan</creatorcontrib><creatorcontrib>Lin, Tsung-Hsien</creatorcontrib><creatorcontrib>Voon, Wen-Chol</creatorcontrib><creatorcontrib>Lai, Wen-Ter</creatorcontrib><creatorcontrib>Sheu, Sheng-Hsiung</creatorcontrib><creatorcontrib>Su, Ho-Ming</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Po-Chao</au><au>Lee, Wen-Hsien</au><au>Chen, Szu-Chia</au><au>Tsai, Yi-Chun</au><au>Chen, Ying-Chih</au><au>Chu, Chun-Yuan</au><au>Lin, Tsung-Hsien</au><au>Voon, Wen-Chol</au><au>Lai, Wen-Ter</au><au>Sheu, Sheng-Hsiung</au><au>Su, Ho-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using CHADS2 and CHA2DS2-VASc scores for mortality prediction in patients with chronic kidney disease</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-11-03</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>18942</spage><epage>18942</epage><pages>18942-18942</pages><artnum>18942</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Chronic kidney disease (CKD) is a public health issue and is associated with high morbidity and mortality. How to identify the high-risk CKD patients is very important to improve the long-term outcome. CHADS
2
and CHA2DS2-VASc scores are clinically useful scores to evaluate the risk of stroke in patients with atrial fibrillation. However, there was no literature discussing about the usefulness of CHADS
2
and CHA2DS2-VASc scores for cardiovascular (CV) and all-cause mortality prediction in CKD patients. This longitudinal study enrolled 437 patients with CKD. CHADS
2
and CHA2DS2-VASc scores were calculated for each patient. CV and all-cause mortality data were collected for long-term outcome prediction. The median follow-up to mortality was 91 (25th–75th percentile: 59–101) months. There were 66 CV mortality and 165 all-cause mortality. In addition to age and heart rate, CHADS
2
and CHA
2
DS
2
-VASc scores (both
P
value < 0.001) were significant predictors of CV and all-cause mortality in the multivariate analysis. Besides, in direct comparison of multivariate model, basic model + CHA
2
DS
2
-VASc score had a better additive predictive value for all-cause mortality than basic model + CHADS
2
score (
P
= 0.031). In conclusion, our study showed both of CHADS
2
and CHA
2
DS
2
-VASc scores were significant predictors for long-term CV and all-cause mortality in CKD patients and CHA
2
DS
2
-VASc score had a better predictive value than CHADS
2
score for all-cause mortality in direct comparison of multivariate model. Therefore, using CHADS
2
and CHA
2
DS
2
-VASc scores to screen CKD patients may be helpful in identifying the high-risk group with increased mortality.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33144647</pmid><doi>10.1038/s41598-020-76098-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-11, Vol.10 (1), p.18942-18942, Article 18942 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7609539 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 692/4022/1585 692/53/2422 692/53/2423 692/699/1585 Cardiovascular diseases Fibrillation Heart rate Humanities and Social Sciences Kidney diseases Morbidity Mortality multidisciplinary Multivariate analysis Predictions Public health Risk groups Science Science (multidisciplinary) |
title | Using CHADS2 and CHA2DS2-VASc scores for mortality prediction in patients with chronic kidney disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20CHADS2%20and%20CHA2DS2-VASc%20scores%20for%20mortality%20prediction%20in%20patients%20with%20chronic%20kidney%20disease&rft.jtitle=Scientific%20reports&rft.au=Hsu,%20Po-Chao&rft.date=2020-11-03&rft.volume=10&rft.issue=1&rft.spage=18942&rft.epage=18942&rft.pages=18942-18942&rft.artnum=18942&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76098-y&rft_dat=%3Cproquest_pubme%3E2457691711%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471531926&rft_id=info:pmid/33144647&rfr_iscdi=true |