Polymersome Poration and Rupture Mediated by Plasmonic Nanoparticles in Response to Single-Pulse Irradiation

The self-assembly of amphiphilic diblock copolymers into polymeric vesicles, commonly known as polymersomes, results in a versatile system for a variety of applications including drug delivery and microreactors. In this study, we show that the incorporation of hydrophobic plasmonic nanoparticles wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2020-10, Vol.12 (10), p.2381, Article 2381
Hauptverfasser: DiSalvo, Gina M., Robinson, Abby R., Aly, Mohamed S., Hoglund, Eric R., O'Malley, Sean M., Griepenburg, Julianne C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2381
container_title Polymers
container_volume 12
creator DiSalvo, Gina M.
Robinson, Abby R.
Aly, Mohamed S.
Hoglund, Eric R.
O'Malley, Sean M.
Griepenburg, Julianne C.
description The self-assembly of amphiphilic diblock copolymers into polymeric vesicles, commonly known as polymersomes, results in a versatile system for a variety of applications including drug delivery and microreactors. In this study, we show that the incorporation of hydrophobic plasmonic nanoparticles within the polymersome membrane facilitates light-stimulated release of vesicle encapsulants. This work seeks to achieve tunable, triggered release with non-invasive, spatiotemporal control using single-pulse irradiation. Gold nanoparticles (AuNPs) are incorporated as photosensitizers into the hydrophobic membrane of micron-scale polymersomes and the cargo release profile is controlled by varying the pulse energy and nanoparticle concentration. We have demonstrated the ability to achieve immediate vesicle rupture as well as vesicle poration resulting in temporal cargo diffusion. Additionally, changing the pulse duration, from femtosecond to nanosecond, provides mechanistic insight into the photothermal and photomechanical contributors that govern membrane disruption in this polymer-nanoparticle hybrid system.
doi_str_mv 10.3390/polym12102381
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7602809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550254135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8edf1d3314bbaf04c0a567e658a86645bdbb1a495f4d325800b01ac73258d9b33</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhgdRbKldug-4EWQ0nzOZjSAXPwpVL1XXIcmcqSmZZEwyyv33ZrylWFeeTU6S5zwkvE3zlOCXjA341RL9YSaUYMokedCcUtyzlrMOP_yrP2nOc77BtbjoOtI_bk4Yw5IQzE8bv98UkHKcAe1j0sXFgHQY0dW6lDUB-gij0wVGZA5o73WeY3AWfdIhLjoVZz1k5AK6grzEkAGViL64cO2h3a--7i9S0puhep80jyZdz85v17Pm27u3X3cf2svP7y92by5bywZaWgnjREbGCDdGT5hbrEXXQyekll3HhRmNIZoPYuIjo0JibDDRtt_6cTCMnTWvj95lNTOMFkJJ2qsluVmng4raqfs3wX1X1_Gn6jtMJR6q4PmtIMUfK-SiZpcteK8DxDUrygUdeom5rOizf9CbuKZQv6eoEJgKTpioVHukbIo5J5juHkOw2qJU96Ks_Isj_wtMnLJ1ECzczdQohewIrv5aGy3_n9658ieMXVxDYb8Bk_uy4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550254135</pqid></control><display><type>article</type><title>Polymersome Poration and Rupture Mediated by Plasmonic Nanoparticles in Response to Single-Pulse Irradiation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>DiSalvo, Gina M. ; Robinson, Abby R. ; Aly, Mohamed S. ; Hoglund, Eric R. ; O'Malley, Sean M. ; Griepenburg, Julianne C.</creator><creatorcontrib>DiSalvo, Gina M. ; Robinson, Abby R. ; Aly, Mohamed S. ; Hoglund, Eric R. ; O'Malley, Sean M. ; Griepenburg, Julianne C.</creatorcontrib><description>The self-assembly of amphiphilic diblock copolymers into polymeric vesicles, commonly known as polymersomes, results in a versatile system for a variety of applications including drug delivery and microreactors. In this study, we show that the incorporation of hydrophobic plasmonic nanoparticles within the polymersome membrane facilitates light-stimulated release of vesicle encapsulants. This work seeks to achieve tunable, triggered release with non-invasive, spatiotemporal control using single-pulse irradiation. Gold nanoparticles (AuNPs) are incorporated as photosensitizers into the hydrophobic membrane of micron-scale polymersomes and the cargo release profile is controlled by varying the pulse energy and nanoparticle concentration. We have demonstrated the ability to achieve immediate vesicle rupture as well as vesicle poration resulting in temporal cargo diffusion. Additionally, changing the pulse duration, from femtosecond to nanosecond, provides mechanistic insight into the photothermal and photomechanical contributors that govern membrane disruption in this polymer-nanoparticle hybrid system.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym12102381</identifier><identifier>PMID: 33081104</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Block copolymers ; Cargo ; Copolymers ; Gold ; Hybrid systems ; Hydrophobicity ; Irradiation ; Lasers ; Light ; Localization ; Membranes ; Microreactors ; Microscopy ; Nanoparticles ; Physical Sciences ; Plasmonics ; Polymer Science ; Polymers ; Pulse duration ; Rupturing ; Science &amp; Technology ; Self-assembly</subject><ispartof>Polymers, 2020-10, Vol.12 (10), p.2381, Article 2381</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000586105500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c392t-8edf1d3314bbaf04c0a567e658a86645bdbb1a495f4d325800b01ac73258d9b33</citedby><cites>FETCH-LOGICAL-c392t-8edf1d3314bbaf04c0a567e658a86645bdbb1a495f4d325800b01ac73258d9b33</cites><orcidid>0000-0003-0504-3926 ; 0000-0002-9617-865X ; 0000-0002-5992-3286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602809/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602809/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2118,27933,27934,28257,53800,53802</link.rule.ids></links><search><creatorcontrib>DiSalvo, Gina M.</creatorcontrib><creatorcontrib>Robinson, Abby R.</creatorcontrib><creatorcontrib>Aly, Mohamed S.</creatorcontrib><creatorcontrib>Hoglund, Eric R.</creatorcontrib><creatorcontrib>O'Malley, Sean M.</creatorcontrib><creatorcontrib>Griepenburg, Julianne C.</creatorcontrib><title>Polymersome Poration and Rupture Mediated by Plasmonic Nanoparticles in Response to Single-Pulse Irradiation</title><title>Polymers</title><addtitle>POLYMERS-BASEL</addtitle><description>The self-assembly of amphiphilic diblock copolymers into polymeric vesicles, commonly known as polymersomes, results in a versatile system for a variety of applications including drug delivery and microreactors. In this study, we show that the incorporation of hydrophobic plasmonic nanoparticles within the polymersome membrane facilitates light-stimulated release of vesicle encapsulants. This work seeks to achieve tunable, triggered release with non-invasive, spatiotemporal control using single-pulse irradiation. Gold nanoparticles (AuNPs) are incorporated as photosensitizers into the hydrophobic membrane of micron-scale polymersomes and the cargo release profile is controlled by varying the pulse energy and nanoparticle concentration. We have demonstrated the ability to achieve immediate vesicle rupture as well as vesicle poration resulting in temporal cargo diffusion. Additionally, changing the pulse duration, from femtosecond to nanosecond, provides mechanistic insight into the photothermal and photomechanical contributors that govern membrane disruption in this polymer-nanoparticle hybrid system.</description><subject>Block copolymers</subject><subject>Cargo</subject><subject>Copolymers</subject><subject>Gold</subject><subject>Hybrid systems</subject><subject>Hydrophobicity</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Light</subject><subject>Localization</subject><subject>Membranes</subject><subject>Microreactors</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Physical Sciences</subject><subject>Plasmonics</subject><subject>Polymer Science</subject><subject>Polymers</subject><subject>Pulse duration</subject><subject>Rupturing</subject><subject>Science &amp; Technology</subject><subject>Self-assembly</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1rFTEUhgdRbKldug-4EWQ0nzOZjSAXPwpVL1XXIcmcqSmZZEwyyv33ZrylWFeeTU6S5zwkvE3zlOCXjA341RL9YSaUYMokedCcUtyzlrMOP_yrP2nOc77BtbjoOtI_bk4Yw5IQzE8bv98UkHKcAe1j0sXFgHQY0dW6lDUB-gij0wVGZA5o73WeY3AWfdIhLjoVZz1k5AK6grzEkAGViL64cO2h3a--7i9S0puhep80jyZdz85v17Pm27u3X3cf2svP7y92by5bywZaWgnjREbGCDdGT5hbrEXXQyekll3HhRmNIZoPYuIjo0JibDDRtt_6cTCMnTWvj95lNTOMFkJJ2qsluVmng4raqfs3wX1X1_Gn6jtMJR6q4PmtIMUfK-SiZpcteK8DxDUrygUdeom5rOizf9CbuKZQv6eoEJgKTpioVHukbIo5J5juHkOw2qJU96Ks_Isj_wtMnLJ1ECzczdQohewIrv5aGy3_n9658ieMXVxDYb8Bk_uy4Q</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>DiSalvo, Gina M.</creator><creator>Robinson, Abby R.</creator><creator>Aly, Mohamed S.</creator><creator>Hoglund, Eric R.</creator><creator>O'Malley, Sean M.</creator><creator>Griepenburg, Julianne C.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0504-3926</orcidid><orcidid>https://orcid.org/0000-0002-9617-865X</orcidid><orcidid>https://orcid.org/0000-0002-5992-3286</orcidid></search><sort><creationdate>20201016</creationdate><title>Polymersome Poration and Rupture Mediated by Plasmonic Nanoparticles in Response to Single-Pulse Irradiation</title><author>DiSalvo, Gina M. ; Robinson, Abby R. ; Aly, Mohamed S. ; Hoglund, Eric R. ; O'Malley, Sean M. ; Griepenburg, Julianne C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8edf1d3314bbaf04c0a567e658a86645bdbb1a495f4d325800b01ac73258d9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Block copolymers</topic><topic>Cargo</topic><topic>Copolymers</topic><topic>Gold</topic><topic>Hybrid systems</topic><topic>Hydrophobicity</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Light</topic><topic>Localization</topic><topic>Membranes</topic><topic>Microreactors</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Physical Sciences</topic><topic>Plasmonics</topic><topic>Polymer Science</topic><topic>Polymers</topic><topic>Pulse duration</topic><topic>Rupturing</topic><topic>Science &amp; Technology</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiSalvo, Gina M.</creatorcontrib><creatorcontrib>Robinson, Abby R.</creatorcontrib><creatorcontrib>Aly, Mohamed S.</creatorcontrib><creatorcontrib>Hoglund, Eric R.</creatorcontrib><creatorcontrib>O'Malley, Sean M.</creatorcontrib><creatorcontrib>Griepenburg, Julianne C.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiSalvo, Gina M.</au><au>Robinson, Abby R.</au><au>Aly, Mohamed S.</au><au>Hoglund, Eric R.</au><au>O'Malley, Sean M.</au><au>Griepenburg, Julianne C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymersome Poration and Rupture Mediated by Plasmonic Nanoparticles in Response to Single-Pulse Irradiation</atitle><jtitle>Polymers</jtitle><stitle>POLYMERS-BASEL</stitle><date>2020-10-16</date><risdate>2020</risdate><volume>12</volume><issue>10</issue><spage>2381</spage><pages>2381-</pages><artnum>2381</artnum><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The self-assembly of amphiphilic diblock copolymers into polymeric vesicles, commonly known as polymersomes, results in a versatile system for a variety of applications including drug delivery and microreactors. In this study, we show that the incorporation of hydrophobic plasmonic nanoparticles within the polymersome membrane facilitates light-stimulated release of vesicle encapsulants. This work seeks to achieve tunable, triggered release with non-invasive, spatiotemporal control using single-pulse irradiation. Gold nanoparticles (AuNPs) are incorporated as photosensitizers into the hydrophobic membrane of micron-scale polymersomes and the cargo release profile is controlled by varying the pulse energy and nanoparticle concentration. We have demonstrated the ability to achieve immediate vesicle rupture as well as vesicle poration resulting in temporal cargo diffusion. Additionally, changing the pulse duration, from femtosecond to nanosecond, provides mechanistic insight into the photothermal and photomechanical contributors that govern membrane disruption in this polymer-nanoparticle hybrid system.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33081104</pmid><doi>10.3390/polym12102381</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0504-3926</orcidid><orcidid>https://orcid.org/0000-0002-9617-865X</orcidid><orcidid>https://orcid.org/0000-0002-5992-3286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2020-10, Vol.12 (10), p.2381, Article 2381
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7602809
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Block copolymers
Cargo
Copolymers
Gold
Hybrid systems
Hydrophobicity
Irradiation
Lasers
Light
Localization
Membranes
Microreactors
Microscopy
Nanoparticles
Physical Sciences
Plasmonics
Polymer Science
Polymers
Pulse duration
Rupturing
Science & Technology
Self-assembly
title Polymersome Poration and Rupture Mediated by Plasmonic Nanoparticles in Response to Single-Pulse Irradiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymersome%20Poration%20and%20Rupture%20Mediated%20by%20Plasmonic%20Nanoparticles%20in%20Response%20to%20Single-Pulse%20Irradiation&rft.jtitle=Polymers&rft.au=DiSalvo,%20Gina%20M.&rft.date=2020-10-16&rft.volume=12&rft.issue=10&rft.spage=2381&rft.pages=2381-&rft.artnum=2381&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym12102381&rft_dat=%3Cproquest_pubme%3E2550254135%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550254135&rft_id=info:pmid/33081104&rfr_iscdi=true