Polymersome Poration and Rupture Mediated by Plasmonic Nanoparticles in Response to Single-Pulse Irradiation
The self-assembly of amphiphilic diblock copolymers into polymeric vesicles, commonly known as polymersomes, results in a versatile system for a variety of applications including drug delivery and microreactors. In this study, we show that the incorporation of hydrophobic plasmonic nanoparticles wit...
Gespeichert in:
Veröffentlicht in: | Polymers 2020-10, Vol.12 (10), p.2381, Article 2381 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The self-assembly of amphiphilic diblock copolymers into polymeric vesicles, commonly known as polymersomes, results in a versatile system for a variety of applications including drug delivery and microreactors. In this study, we show that the incorporation of hydrophobic plasmonic nanoparticles within the polymersome membrane facilitates light-stimulated release of vesicle encapsulants. This work seeks to achieve tunable, triggered release with non-invasive, spatiotemporal control using single-pulse irradiation. Gold nanoparticles (AuNPs) are incorporated as photosensitizers into the hydrophobic membrane of micron-scale polymersomes and the cargo release profile is controlled by varying the pulse energy and nanoparticle concentration. We have demonstrated the ability to achieve immediate vesicle rupture as well as vesicle poration resulting in temporal cargo diffusion. Additionally, changing the pulse duration, from femtosecond to nanosecond, provides mechanistic insight into the photothermal and photomechanical contributors that govern membrane disruption in this polymer-nanoparticle hybrid system. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym12102381 |