Anthropogenic emissions from South Asia reverses the aerosol indirect effect over the northern Indian Ocean

Atmospheric aerosols play an important role in the formation of warm clouds by acting as efficient cloud condensation nuclei (CCN) and their interactions are believed to cool the Earth-Atmosphere system (‘first indirect effect or Twomey effect’) in a highly uncertain manner compared to the other for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-10, Vol.10 (1), p.18360-18360, Article 18360
Hauptverfasser: Jose, Subin, Nair, Vijayakumar S., Babu, S. Suresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atmospheric aerosols play an important role in the formation of warm clouds by acting as efficient cloud condensation nuclei (CCN) and their interactions are believed to cool the Earth-Atmosphere system (‘first indirect effect or Twomey effect’) in a highly uncertain manner compared to the other forcing agents. Here we demonstrate using long-term (2003–2016) satellite observations (NASA’s A-train satellite constellations) over the northern Indian Ocean, that enhanced aerosol loading (due to anthropogenic emissions) can reverse the first indirect effect significantly. In contrast to Twomey effect, a statistically significant increase in cloud effective radius (CER, µm) is observed with respect to an increase in aerosol loading for clouds having low liquid water path (LWP 
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-74897-x