Study of High-Density Polyethylene (HDPE) Kinetics Modification Treated by Dielectric Barrier Discharge (DBD) Plasma

In this work, the plasma was used in the dielectric barrier discharge (DBD) technique for modifying the high-density polyethylene (HDPE) surface. The treatments were performed via argon or oxygen, for 10 min, at a frequency of 820 Hz, voltage of 20 kV, 2 mm distance between electrodes, and atmospher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2020-10, Vol.12 (10), p.2422
Hauptverfasser: Neto, João Freire de Medeiros, Alves de Souza, Ivan, Feitor, Michelle Cequeira, Targino, Talita Galvão, Diniz, Gutembergy Ferreira, Libório, Maxwell Santana, Sousa, Rômulo Ribeiro Magalhães, Costa, Thercio Henrique de Carvalho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the plasma was used in the dielectric barrier discharge (DBD) technique for modifying the high-density polyethylene (HDPE) surface. The treatments were performed via argon or oxygen, for 10 min, at a frequency of 820 Hz, voltage of 20 kV, 2 mm distance between electrodes, and atmospheric pressure. The efficiency of the plasma was determined through the triple Langmuir probe to check if it had enough energy to promote chemical changes on the material surface. Physicochemical changes were diagnosed through surface characterization techniques such as contact angle, attenuated total reflection to Fourier transform infrared spectroscopy (ATR-FTIR), X-ray excited photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Plasma electronics temperature showed that it has enough energy to break or form chemical bonds on the material surface, impacting its wettability directly. The wettability test was performed before and after treatment through the sessile drop, using distilled water, glycerin, and dimethylformamide, to the profile of surface tensions by the Fowkes method, analyzing the contact angle variation. ATR-FTIR and XPS analyses showed that groups and bonds were altered or generated on the surface when compared with the untreated sample. The AFM showed a change in roughness, and this directly affected the increase of wettability.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym12102422