Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate
Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question. bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pr...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-10, Vol.21 (20), p.7542 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 7542 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Waters, James K Mawhinney, Thomas P Emerich, David W |
description | Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question.
bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K
values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism. |
doi_str_mv | 10.3390/ijms21207542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7589128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548628847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-29b23ea7fd111f52a5fa102b572fee23053b3c2979b42e1687e885bc85f0e6083</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EoqVw44wsceHQgD2OE-eC1JYWKrWUQzlbTuJsZ5XYi-2gTX8NP5WEfrBwsiU_88yMX0Jec_ZeiIp9wPUQgQMrZQ5PyD7PATLGivLpzn2PvIhxzRgIkNVzsicEKwpWiX3y6yum4FfW0aMYccDeJPSOGtfS62Bc3PiQaD3R0y391huXDH0oyM5wi25Fj4Npp3CDt77GcaAtmltvuw4btC7SY9MkGzy2kZ5Heunbce5g20V5tZ1mzeFfhH6aKzBNf7r32aVZ0JfkWWf6aF_dnwfk-9np9cmX7OLq8_nJ0UXW5BxSBlUNwpqyaznnnQQjO8MZ1LKEzloQTIpaNFCVVZ2D5YUqrVKybpTsmC2YEgfk4513M9aDbRvrUjC93gQcTJi0N6j_fXF4o1f-py6lqjgsgnf3guB_jDYmPWBsbD__mvVj1JBLrqQoeDmjb_9D134Mbl5Pg8xVAUrlC3V4RzXBxxhs9zgMZ3qJXu9GP-Nvdhd4hB-yFr8BmmutLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548628847</pqid></control><display><type>article</type><title>Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Waters, James K ; Mawhinney, Thomas P ; Emerich, David W</creator><creatorcontrib>Waters, James K ; Mawhinney, Thomas P ; Emerich, David W</creatorcontrib><description>Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question.
bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K
values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21207542</identifier><identifier>PMID: 33066093</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alanine ; Alanine - metabolism ; Amino acids ; Ammonium ; Ammonium Compounds - metabolism ; Bacteria ; Bacterial Proteins - metabolism ; Bacteroids ; Biological assimilation ; Bradyrhizobium - metabolism ; Bradyrhizobium - pathogenicity ; Bradyrhizobium diazoefficiens ; Chain branching ; Chemical compounds ; Dehydrogenases ; Enzymes ; Excretion ; Glycine max - microbiology ; Host plants ; Kinetics ; Labeling ; Malate ; Malates - metabolism ; Membrane Transport Proteins - metabolism ; Metabolism ; Metabolites ; Nitrogen ; Nitrogen Fixation ; Nitrogenation ; Nodules ; Oxygen - metabolism ; Partial pressure ; Root Nodules, Plant - metabolism ; Root Nodules, Plant - microbiology ; Soybeans ; Symbiosis</subject><ispartof>International journal of molecular sciences, 2020-10, Vol.21 (20), p.7542</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-29b23ea7fd111f52a5fa102b572fee23053b3c2979b42e1687e885bc85f0e6083</citedby><cites>FETCH-LOGICAL-c412t-29b23ea7fd111f52a5fa102b572fee23053b3c2979b42e1687e885bc85f0e6083</cites><orcidid>0000-0002-2417-430X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589128/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589128/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33066093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waters, James K</creatorcontrib><creatorcontrib>Mawhinney, Thomas P</creatorcontrib><creatorcontrib>Emerich, David W</creatorcontrib><title>Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question.
bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K
values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism.</description><subject>Alanine</subject><subject>Alanine - metabolism</subject><subject>Amino acids</subject><subject>Ammonium</subject><subject>Ammonium Compounds - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteroids</subject><subject>Biological assimilation</subject><subject>Bradyrhizobium - metabolism</subject><subject>Bradyrhizobium - pathogenicity</subject><subject>Bradyrhizobium diazoefficiens</subject><subject>Chain branching</subject><subject>Chemical compounds</subject><subject>Dehydrogenases</subject><subject>Enzymes</subject><subject>Excretion</subject><subject>Glycine max - microbiology</subject><subject>Host plants</subject><subject>Kinetics</subject><subject>Labeling</subject><subject>Malate</subject><subject>Malates - metabolism</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nitrogen</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenation</subject><subject>Nodules</subject><subject>Oxygen - metabolism</subject><subject>Partial pressure</subject><subject>Root Nodules, Plant - metabolism</subject><subject>Root Nodules, Plant - microbiology</subject><subject>Soybeans</subject><subject>Symbiosis</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1v1DAQhi0EoqVw44wsceHQgD2OE-eC1JYWKrWUQzlbTuJsZ5XYi-2gTX8NP5WEfrBwsiU_88yMX0Jec_ZeiIp9wPUQgQMrZQ5PyD7PATLGivLpzn2PvIhxzRgIkNVzsicEKwpWiX3y6yum4FfW0aMYccDeJPSOGtfS62Bc3PiQaD3R0y391huXDH0oyM5wi25Fj4Npp3CDt77GcaAtmltvuw4btC7SY9MkGzy2kZ5Heunbce5g20V5tZ1mzeFfhH6aKzBNf7r32aVZ0JfkWWf6aF_dnwfk-9np9cmX7OLq8_nJ0UXW5BxSBlUNwpqyaznnnQQjO8MZ1LKEzloQTIpaNFCVVZ2D5YUqrVKybpTsmC2YEgfk4513M9aDbRvrUjC93gQcTJi0N6j_fXF4o1f-py6lqjgsgnf3guB_jDYmPWBsbD__mvVj1JBLrqQoeDmjb_9D134Mbl5Pg8xVAUrlC3V4RzXBxxhs9zgMZ3qJXu9GP-Nvdhd4hB-yFr8BmmutLA</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Waters, James K</creator><creator>Mawhinney, Thomas P</creator><creator>Emerich, David W</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2417-430X</orcidid></search><sort><creationdate>20201013</creationdate><title>Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate</title><author>Waters, James K ; Mawhinney, Thomas P ; Emerich, David W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-29b23ea7fd111f52a5fa102b572fee23053b3c2979b42e1687e885bc85f0e6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alanine</topic><topic>Alanine - metabolism</topic><topic>Amino acids</topic><topic>Ammonium</topic><topic>Ammonium Compounds - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteroids</topic><topic>Biological assimilation</topic><topic>Bradyrhizobium - metabolism</topic><topic>Bradyrhizobium - pathogenicity</topic><topic>Bradyrhizobium diazoefficiens</topic><topic>Chain branching</topic><topic>Chemical compounds</topic><topic>Dehydrogenases</topic><topic>Enzymes</topic><topic>Excretion</topic><topic>Glycine max - microbiology</topic><topic>Host plants</topic><topic>Kinetics</topic><topic>Labeling</topic><topic>Malate</topic><topic>Malates - metabolism</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nitrogen</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenation</topic><topic>Nodules</topic><topic>Oxygen - metabolism</topic><topic>Partial pressure</topic><topic>Root Nodules, Plant - metabolism</topic><topic>Root Nodules, Plant - microbiology</topic><topic>Soybeans</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waters, James K</creatorcontrib><creatorcontrib>Mawhinney, Thomas P</creatorcontrib><creatorcontrib>Emerich, David W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waters, James K</au><au>Mawhinney, Thomas P</au><au>Emerich, David W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>21</volume><issue>20</issue><spage>7542</spage><pages>7542-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question.
bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K
values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33066093</pmid><doi>10.3390/ijms21207542</doi><orcidid>https://orcid.org/0000-0002-2417-430X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-10, Vol.21 (20), p.7542 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7589128 |
source | MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Alanine Alanine - metabolism Amino acids Ammonium Ammonium Compounds - metabolism Bacteria Bacterial Proteins - metabolism Bacteroids Biological assimilation Bradyrhizobium - metabolism Bradyrhizobium - pathogenicity Bradyrhizobium diazoefficiens Chain branching Chemical compounds Dehydrogenases Enzymes Excretion Glycine max - microbiology Host plants Kinetics Labeling Malate Malates - metabolism Membrane Transport Proteins - metabolism Metabolism Metabolites Nitrogen Nitrogen Fixation Nitrogenation Nodules Oxygen - metabolism Partial pressure Root Nodules, Plant - metabolism Root Nodules, Plant - microbiology Soybeans Symbiosis |
title | Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20Assimilation%20and%20Transport%20by%20Ex%20Planta%20Nitrogen-Fixing%20Bradyrhizobium%20diazoefficiens%20Bacteroids%20Is%20Modulated%20by%20Oxygen,%20Bacteroid%20Density%20and%20l-Malate&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Waters,%20James%20K&rft.date=2020-10-13&rft.volume=21&rft.issue=20&rft.spage=7542&rft.pages=7542-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21207542&rft_dat=%3Cproquest_pubme%3E2548628847%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548628847&rft_id=info:pmid/33066093&rfr_iscdi=true |