Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate

Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question. bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-10, Vol.21 (20), p.7542
Hauptverfasser: Waters, James K, Mawhinney, Thomas P, Emerich, David W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 7542
container_title International journal of molecular sciences
container_volume 21
creator Waters, James K
Mawhinney, Thomas P
Emerich, David W
description Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question. bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism.
doi_str_mv 10.3390/ijms21207542
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7589128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548628847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-29b23ea7fd111f52a5fa102b572fee23053b3c2979b42e1687e885bc85f0e6083</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EoqVw44wsceHQgD2OE-eC1JYWKrWUQzlbTuJsZ5XYi-2gTX8NP5WEfrBwsiU_88yMX0Jec_ZeiIp9wPUQgQMrZQ5PyD7PATLGivLpzn2PvIhxzRgIkNVzsicEKwpWiX3y6yum4FfW0aMYccDeJPSOGtfS62Bc3PiQaD3R0y391huXDH0oyM5wi25Fj4Npp3CDt77GcaAtmltvuw4btC7SY9MkGzy2kZ5Heunbce5g20V5tZ1mzeFfhH6aKzBNf7r32aVZ0JfkWWf6aF_dnwfk-9np9cmX7OLq8_nJ0UXW5BxSBlUNwpqyaznnnQQjO8MZ1LKEzloQTIpaNFCVVZ2D5YUqrVKybpTsmC2YEgfk4513M9aDbRvrUjC93gQcTJi0N6j_fXF4o1f-py6lqjgsgnf3guB_jDYmPWBsbD__mvVj1JBLrqQoeDmjb_9D134Mbl5Pg8xVAUrlC3V4RzXBxxhs9zgMZ3qJXu9GP-Nvdhd4hB-yFr8BmmutLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548628847</pqid></control><display><type>article</type><title>Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Waters, James K ; Mawhinney, Thomas P ; Emerich, David W</creator><creatorcontrib>Waters, James K ; Mawhinney, Thomas P ; Emerich, David W</creatorcontrib><description>Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question. bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21207542</identifier><identifier>PMID: 33066093</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alanine ; Alanine - metabolism ; Amino acids ; Ammonium ; Ammonium Compounds - metabolism ; Bacteria ; Bacterial Proteins - metabolism ; Bacteroids ; Biological assimilation ; Bradyrhizobium - metabolism ; Bradyrhizobium - pathogenicity ; Bradyrhizobium diazoefficiens ; Chain branching ; Chemical compounds ; Dehydrogenases ; Enzymes ; Excretion ; Glycine max - microbiology ; Host plants ; Kinetics ; Labeling ; Malate ; Malates - metabolism ; Membrane Transport Proteins - metabolism ; Metabolism ; Metabolites ; Nitrogen ; Nitrogen Fixation ; Nitrogenation ; Nodules ; Oxygen - metabolism ; Partial pressure ; Root Nodules, Plant - metabolism ; Root Nodules, Plant - microbiology ; Soybeans ; Symbiosis</subject><ispartof>International journal of molecular sciences, 2020-10, Vol.21 (20), p.7542</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-29b23ea7fd111f52a5fa102b572fee23053b3c2979b42e1687e885bc85f0e6083</citedby><cites>FETCH-LOGICAL-c412t-29b23ea7fd111f52a5fa102b572fee23053b3c2979b42e1687e885bc85f0e6083</cites><orcidid>0000-0002-2417-430X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589128/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589128/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33066093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waters, James K</creatorcontrib><creatorcontrib>Mawhinney, Thomas P</creatorcontrib><creatorcontrib>Emerich, David W</creatorcontrib><title>Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question. bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism.</description><subject>Alanine</subject><subject>Alanine - metabolism</subject><subject>Amino acids</subject><subject>Ammonium</subject><subject>Ammonium Compounds - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteroids</subject><subject>Biological assimilation</subject><subject>Bradyrhizobium - metabolism</subject><subject>Bradyrhizobium - pathogenicity</subject><subject>Bradyrhizobium diazoefficiens</subject><subject>Chain branching</subject><subject>Chemical compounds</subject><subject>Dehydrogenases</subject><subject>Enzymes</subject><subject>Excretion</subject><subject>Glycine max - microbiology</subject><subject>Host plants</subject><subject>Kinetics</subject><subject>Labeling</subject><subject>Malate</subject><subject>Malates - metabolism</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nitrogen</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenation</subject><subject>Nodules</subject><subject>Oxygen - metabolism</subject><subject>Partial pressure</subject><subject>Root Nodules, Plant - metabolism</subject><subject>Root Nodules, Plant - microbiology</subject><subject>Soybeans</subject><subject>Symbiosis</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1v1DAQhi0EoqVw44wsceHQgD2OE-eC1JYWKrWUQzlbTuJsZ5XYi-2gTX8NP5WEfrBwsiU_88yMX0Jec_ZeiIp9wPUQgQMrZQ5PyD7PATLGivLpzn2PvIhxzRgIkNVzsicEKwpWiX3y6yum4FfW0aMYccDeJPSOGtfS62Bc3PiQaD3R0y391huXDH0oyM5wi25Fj4Npp3CDt77GcaAtmltvuw4btC7SY9MkGzy2kZ5Heunbce5g20V5tZ1mzeFfhH6aKzBNf7r32aVZ0JfkWWf6aF_dnwfk-9np9cmX7OLq8_nJ0UXW5BxSBlUNwpqyaznnnQQjO8MZ1LKEzloQTIpaNFCVVZ2D5YUqrVKybpTsmC2YEgfk4513M9aDbRvrUjC93gQcTJi0N6j_fXF4o1f-py6lqjgsgnf3guB_jDYmPWBsbD__mvVj1JBLrqQoeDmjb_9D134Mbl5Pg8xVAUrlC3V4RzXBxxhs9zgMZ3qJXu9GP-Nvdhd4hB-yFr8BmmutLA</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Waters, James K</creator><creator>Mawhinney, Thomas P</creator><creator>Emerich, David W</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2417-430X</orcidid></search><sort><creationdate>20201013</creationdate><title>Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate</title><author>Waters, James K ; Mawhinney, Thomas P ; Emerich, David W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-29b23ea7fd111f52a5fa102b572fee23053b3c2979b42e1687e885bc85f0e6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alanine</topic><topic>Alanine - metabolism</topic><topic>Amino acids</topic><topic>Ammonium</topic><topic>Ammonium Compounds - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteroids</topic><topic>Biological assimilation</topic><topic>Bradyrhizobium - metabolism</topic><topic>Bradyrhizobium - pathogenicity</topic><topic>Bradyrhizobium diazoefficiens</topic><topic>Chain branching</topic><topic>Chemical compounds</topic><topic>Dehydrogenases</topic><topic>Enzymes</topic><topic>Excretion</topic><topic>Glycine max - microbiology</topic><topic>Host plants</topic><topic>Kinetics</topic><topic>Labeling</topic><topic>Malate</topic><topic>Malates - metabolism</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nitrogen</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenation</topic><topic>Nodules</topic><topic>Oxygen - metabolism</topic><topic>Partial pressure</topic><topic>Root Nodules, Plant - metabolism</topic><topic>Root Nodules, Plant - microbiology</topic><topic>Soybeans</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waters, James K</creatorcontrib><creatorcontrib>Mawhinney, Thomas P</creatorcontrib><creatorcontrib>Emerich, David W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waters, James K</au><au>Mawhinney, Thomas P</au><au>Emerich, David W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>21</volume><issue>20</issue><spage>7542</spage><pages>7542-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question. bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33066093</pmid><doi>10.3390/ijms21207542</doi><orcidid>https://orcid.org/0000-0002-2417-430X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-10, Vol.21 (20), p.7542
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7589128
source MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alanine
Alanine - metabolism
Amino acids
Ammonium
Ammonium Compounds - metabolism
Bacteria
Bacterial Proteins - metabolism
Bacteroids
Biological assimilation
Bradyrhizobium - metabolism
Bradyrhizobium - pathogenicity
Bradyrhizobium diazoefficiens
Chain branching
Chemical compounds
Dehydrogenases
Enzymes
Excretion
Glycine max - microbiology
Host plants
Kinetics
Labeling
Malate
Malates - metabolism
Membrane Transport Proteins - metabolism
Metabolism
Metabolites
Nitrogen
Nitrogen Fixation
Nitrogenation
Nodules
Oxygen - metabolism
Partial pressure
Root Nodules, Plant - metabolism
Root Nodules, Plant - microbiology
Soybeans
Symbiosis
title Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20Assimilation%20and%20Transport%20by%20Ex%20Planta%20Nitrogen-Fixing%20Bradyrhizobium%20diazoefficiens%20Bacteroids%20Is%20Modulated%20by%20Oxygen,%20Bacteroid%20Density%20and%20l-Malate&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Waters,%20James%20K&rft.date=2020-10-13&rft.volume=21&rft.issue=20&rft.spage=7542&rft.pages=7542-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21207542&rft_dat=%3Cproquest_pubme%3E2548628847%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548628847&rft_id=info:pmid/33066093&rfr_iscdi=true