Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate
Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question. bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pr...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-10, Vol.21 (20), p.7542 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question.
bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K
values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms21207542 |