Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures

In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO₃, which is unable to ring-open DOL, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-10, Vol.117 (42), p.26053-26060
Hauptverfasser: Zhao, Qing, Liu, Xiaotun, Zheng, Jingxu, Deng, Yue, Warren, Alexander, Zhang, Qiyuan, Archer, Lynden
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO₃, which is unable to ring-open DOL, possesses a previously unknown ability to coordinate with and strain DOL molecules in bulk liquids, completely arresting their crystallization. The strained DOL electrolytes exhibit physical properties analogous to amorphous polymers, including a prominent glass transition, elevated moduli, and low activation entropy for ion transport, but manifest unusually high, liquidlike ionic conductivities (e.g., 1 mS/cm) at temperatures as low as −50 °C. Systematic electrochemical studies reveal that the electrolytes also promote reversible cycling of Li metal anodes with high Coulombic efficiency (CE) on both conventional planar substrates (1 mAh/cm² over 1,000 cycles with 99.1% CE; 3 mAh/cm² over 300 cycles with 99.2% CE) and unconventional, nonplanar/three-dimensional (3D) substrates (10 mAh/cm² over 100 cycles with 99.3% CE). Our finding that LiNO₃ promotes reversibility of Li metal electrodes in liquid DOL electrolytes by a physical mechanism provides a possible solution to a long-standing puzzle in the field about the versatility of LiNO₃ salt additives for enhancing reversibility of Li metal electrodes in essentially any aprotic liquid electrolyte solvent. As a first step toward understanding practical benefits of these findings, we create functional Li∥lithium iron phosphate (LFP) batteries in which LFP cathodes with high capacity (5 to 10 mAh/cm²) are paired with thin (50 μm) lithium metal anodes, and investigate their galvanostatic electrochemical cycling behaviors.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2004576117