Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures

Purpose High-dimensional image features that underlie COVID-19 pneumonia remain opaque. We aim to compare feature engineering and deep learning methods to gain insights into the image features that drive CT-based for COVID-19 pneumonia prediction, and uncover CT image features significant for COVID-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2021-05, Vol.48 (5), p.1478-1486
Hauptverfasser: Wang, Hongmei, Wang, Lu, Lee, Edward H., Zheng, Jimmy, Zhang, Wei, Halabi, Safwan, Liu, Chunlei, Deng, Kexue, Song, Jiangdian, Yeom, Kristen W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose High-dimensional image features that underlie COVID-19 pneumonia remain opaque. We aim to compare feature engineering and deep learning methods to gain insights into the image features that drive CT-based for COVID-19 pneumonia prediction, and uncover CT image features significant for COVID-19 pneumonia from deep learning and radiomics framework. Methods A total of 266 patients with COVID-19 and other viral pneumonia with clinical symptoms and CT signs similar to that of COVID-19 during the outbreak were retrospectively collected from three hospitals in China and the USA. All the pneumonia lesions on CT images were manually delineated by four radiologists. One hundred eighty-four patients ( n  = 93 COVID-19 positive; n  = 91 COVID-19 negative; 24,216 pneumonia lesions from 12,001 CT image slices) from two hospitals from China served as discovery cohort for model development. Thirty-two patients (17 COVID-19 positive, 15 COVID-19 negative; 7883 pneumonia lesions from 3799 CT image slices) from a US hospital served as external validation cohort. A bi-directional adversarial network-based framework and PyRadiomics package were used to extract deep learning and radiomics features, respectively. Linear and Lasso classifiers were used to develop models predictive of COVID-19 versus non-COVID-19 viral pneumonia. Results 120-dimensional deep learning image features and 120-dimensional radiomics features were extracted. Linear and Lasso classifiers identified 32 high-dimensional deep learning image features and 4 radiomics features associated with COVID-19 pneumonia diagnosis ( P   73% and specificity > 75% on external validation cohort with slight superior performance for radiomics Lasso classifier. Human expert diagnostic performance improved (increase by 16.5% and 11.6% in sensitivity and specificity, respectively) when using a combined deep learning-radiomics model. Conclusions We uncover specific deep learning and radiomics features to add insight into interpretability of machine learning algorithms and compare deep learning and radiomics models for COVID-19 pneumonia that might serve to augment human diagnostic performance.
ISSN:1619-7070
1619-7089
1619-7089
DOI:10.1007/s00259-020-05075-4