Tracking the carbons supplying gluconeogenesis

As the burden of type 2 diabetes mellitus (T2DM) grows in the 21st century, the need to understand glucose metabolism heightens. Increased gluconeogenesis is a major contributor to the hyperglycemia seen in T2DM. Isotope tracer experiments in humans and animals over several decades have offered insi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-10, Vol.295 (42), p.14419-14429
Hauptverfasser: Shah, Ankit M., Wondisford, Fredric E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the burden of type 2 diabetes mellitus (T2DM) grows in the 21st century, the need to understand glucose metabolism heightens. Increased gluconeogenesis is a major contributor to the hyperglycemia seen in T2DM. Isotope tracer experiments in humans and animals over several decades have offered insights into gluconeogenesis under euglycemic and diabetic conditions. This review focuses on the current understanding of carbon flux in gluconeogenesis, including substrate contribution of various gluconeogenic precursors to glucose production. Alterations of gluconeogenic metabolites and fluxes in T2DM are discussed. We also highlight ongoing knowledge gaps in the literature that require further investigation. A comprehensive analysis of gluconeogenesis may enable a better understanding of T2DM pathophysiology and identification of novel targets for treating hyperglycemia.
ISSN:0021-9258
1083-351X
1083-351X
DOI:10.1074/jbc.REV120.012758