Human umbilical cord‑derived mesenchymal stem cells and human cord blood mononuclear cells protect against cisplatin‑induced acute kidney injury in rat models
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are a promising tool to attenuate cisplatin (CP)-induced acute kidney injury (AKI). However, whether the transplantation of human cord blood mononuclear cells (hCBMNCs) exhibits similar protective effects and their potential underlying me...
Gespeichert in:
Veröffentlicht in: | Experimental and therapeutic medicine 2020-12, Vol.20 (6), p.145-145, Article 145 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are a promising tool to attenuate cisplatin (CP)-induced acute kidney injury (AKI). However, whether the transplantation of human cord blood mononuclear cells (hCBMNCs) exhibits similar protective effects and their potential underlying mechanisms of action remain unclear. The present study aimed to determine the protective effects of hUCMSCs and hCBMNCs transplantation therapies on an established CP-induced rat model and explore their underlying mechanisms of action. A total of 24 Sprague-Dawley rats, selected based on body weight, were randomly assigned into 4 groups: i) normal control; ii) model (CP); iii) hCBMNCs (CP + hCBMNCs); and iv) hUCMSCs (CP + hUCMSCs). hUCMSCs (2.0*[10.sup.6] cells) and hCBMNCs (2.0*[10.sup.6] cells) were injected into the femoral vein of rats 24 h after CP (8 mg/kg) treatment. To determine the effects of hCBMNCs and hUCMSCs on CP-induced rats, renal function assessment and histological evaluations were performed. Expression levels of high mobility group box 1 (HMGB1) and the ratio of Bax/Bcl2 in renal tissues were detected to elucidate their underlying molecular mechanisms of action. The results demonstrated that transplantation of hUCMSCs and hCBMNCs significantly improved renal function in CP-induced AKI rats, as evidenced by the enhancement of renal morphology; decreased concentrations of blood urea nitrogen and serum creatinine; and a lower percentage of apoptotic renal tubular cells. The expression of HMGB1 and the ratio of Bax/Bcl-2 were significantly reduced in the hUCMSCs and hCBMNCs groups compared with CP group. In conclusion, the present study indicated that hCBMNCs exert similar protective effects to hUCMSCs on CP-induced AKI. hUCMSCs and hCBMNCs protect against CP-induced AKI by suppressing HMGB1 expression and preventing cell apoptosis. Key words: acute kidney injury, high mobility group box 1, apoptosis, stem cells, cisplatin |
---|---|
ISSN: | 1792-0981 1792-1015 |
DOI: | 10.3892/etm.2020.9274 |