Effect of irrigation with saline magnetized water and different soil amendments on growth and flower production of Calendula officinalis L. plants
Global climate change and increased population caused significant depletion of freshwater especially in arid and semi-arid regions including Saudi Arabia. Saline water magnetization before irrigation may help in alleviating the adverse effects of salinity on plants. The current study aimed to examin...
Gespeichert in:
Veröffentlicht in: | Saudi journal of biological sciences 2020-11, Vol.27 (11), p.3072-3078 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Global climate change and increased population caused significant depletion of freshwater especially in arid and semi-arid regions including Saudi Arabia. Saline water magnetization before irrigation may help in alleviating the adverse effects of salinity on plants. The current study aimed to examine the potential beneficial effects of water magnetization and soil amendments on growth, productivity, and survival of Calendula officinalis L. plants. Three types of water (tap water “control”, well water, and magnetized well water) and two types of soil amendments (Fe2SO4 and peat moss) were examined. Our results showed that irrigating C. officinalis plants with saline well water (WW) adversely affected growth and flowering as compared to tap water (TW). However, plants irrigated with magnetized water (MW) showed significant enhancement in all the studied vegetative and flowering growth parameters as compared to those irrigated with WW. Furthermore, mineral contents and survival of C. officinalis plants irrigated with MW were higher than those irrigated with TW. Irrigation with MW significantly reduced levels of NA+ and Cl− ions in leaves of C. officinalis plants indicating the role of magnetization in alleviating harmful effects of salinity. The current study showed that water magnetization enhanced water quality and increased plant’s ability to absorb water and nutrients. Further studies are needed to examine the possibility of irrigating food crops with magnetized water. |
---|---|
ISSN: | 1319-562X 2213-7106 |
DOI: | 10.1016/j.sjbs.2020.09.015 |