Simulating complex quantum networks with time crystals

Crystals arise as the result of the breaking of a spatial translation symmetry. Similarly, translation symmetries can also be broken in time so that discrete time crystals appear. Here, we introduce a method to describe, characterize, and explore the physical phenomena related to this phase of matte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-10, Vol.6 (42)
Hauptverfasser: Estarellas, M P, Osada, T, Bastidas, V M, Renoust, B, Sanaka, K, Munro, W J, Nemoto, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crystals arise as the result of the breaking of a spatial translation symmetry. Similarly, translation symmetries can also be broken in time so that discrete time crystals appear. Here, we introduce a method to describe, characterize, and explore the physical phenomena related to this phase of matter using tools from graph theory. The analysis of the graphs allows to visualizing time-crystalline order and to analyze features of the quantum system. For example, we explore in detail the melting process of a minimal model of a period-2 discrete time crystal and describe it in terms of the evolution of the associated graph structure. We show that during the melting process, the network evolution exhibits an emergent preferential attachment mechanism, directly associated with the existence of scale-free networks. Thus, our strategy allows us to propose a previously unexplored far-reaching application of time crystals as a quantum simulator of complex quantum networks.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aay8892