Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice

Pericytes play essential roles in blood–brain barrier (BBB) integrity and dysfunction or degeneration of pericytes is implicated in a set of neurological disorders although the underlying mechanism remains largely unknown. However, the scarcity of material sources hinders the application of BBB mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-10, Vol.11 (1), p.5196-5196, Article 5196
Hauptverfasser: Sun, Jiaqi, Huang, Yinong, Gong, Jin, Wang, Jiancheng, Fan, Yubao, Cai, Jianye, Wang, Yi, Qiu, Yuan, Wei, Yili, Xiong, Chuanfeng, Chen, Jierui, Wang, Bin, Ma, Yuanchen, Huang, Lihua, Chen, Xiaoyong, Zheng, Shuwei, Huang, Weijun, Ke, Qiong, Wang, Tao, Li, Xiaoping, Zhang, Wei, Xiang, Andy Peng, Li, Weiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pericytes play essential roles in blood–brain barrier (BBB) integrity and dysfunction or degeneration of pericytes is implicated in a set of neurological disorders although the underlying mechanism remains largely unknown. However, the scarcity of material sources hinders the application of BBB models in vitro for pathophysiological studies. Additionally, whether pericytes can be used to treat neurological disorders remains to be elucidated. Here, we generate pericyte-like cells (PCs) from human pluripotent stem cells (hPSCs) through the intermediate stage of the cranial neural crest (CNC) and reveal that the cranial neural crest-derived pericyte-like cells (hPSC-CNC PCs) express typical pericyte markers including PDGFRβ, CD146, NG2, CD13, Caldesmon, and Vimentin, and display distinct contractile properties, vasculogenic potential and endothelial barrier function. More importantly, when transplanted into a murine model of transient middle cerebral artery occlusion (tMCAO) with BBB disruption, hPSC-CNC PCs efficiently promote neurological functional recovery in tMCAO mice by reconstructing the BBB integrity and preventing of neuronal apoptosis. Our results indicate that hPSC-CNC PCs may represent an ideal cell source for the treatment of BBB dysfunction-related disorders and help to model the human BBB in vitro for the study of the pathogenesis of such neurological diseases. Pericytes play an essential role in blood brain barrier (BBB) integrity. Here, the authors generate pericyte-like cells (PCs) from human pluripotent stem cells (hPSCs) which display functional properties and also promote BBB recovery in a mouse model of cerebral artery occlusion.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-19042-y