Regenerative therapy for spinal cord injury using iPSC technology

Spinal cord injury (SCI) is a devastating event that causes permanent neurologic impairments. Cell transplantation therapy using neural precursor cells (NPCs) is a promising intervention aiming to replace damaged neural tissue and restore certain functions. Because the protocol to produce human indu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inflammation and Regeneration 2020-10, Vol.40 (1), p.1-40, Article 40
Hauptverfasser: Nagoshi, Narihito, Okano, Hideyuki, Nakamura, Masaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spinal cord injury (SCI) is a devastating event that causes permanent neurologic impairments. Cell transplantation therapy using neural precursor cells (NPCs) is a promising intervention aiming to replace damaged neural tissue and restore certain functions. Because the protocol to produce human induced pluripotent stem cells (iPSCs) was first established, we have attempted to apply this technology for regenerative therapy in SCI. Our group reported beneficial effects of iPSC-derived NPC transplantation and addressed safety issues on tumorigenicity after grafting. These findings will soon be tested at the clinical trial stage, the protocol of which has already been approved by the Ministry of Health, Labour and Welfare in Japan. Current transplantation therapies treat patients at the subacute phase after injury, highlighting the need for effective treatments for chronic SCI. We recently demonstrated the modest efficacy of gamma secretase inhibitor treatment of iPSC-NPCs before transplantation at the chronic phase. However, more comprehensive strategies involving combinatory therapies are essential to enhance current spinal cord regeneration treatments.
ISSN:1880-8190
1880-9693
1880-8190
DOI:10.1186/s41232-020-00149-0