Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study
Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and surviv...
Gespeichert in:
Veröffentlicht in: | Biometrics 2020-12, Vol.76 (4), p.1109-1119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1119 |
---|---|
container_issue | 4 |
container_start_page | 1109 |
container_title | Biometrics |
container_volume | 76 |
creator | Wang, Yue Ibrahim, Joseph G. Zhu, Hongtu |
description | Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. |
doi_str_mv | 10.1111/biom.13219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7549074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469252515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4489-bef923cf2cd984a08deb2b23a02fec6a3c8e0fe6c4e81d7b98cc9f25ca42371f3</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoModq3e-AMk4IUiTM3n7ORGqMWPQqVeKHgXMpmT3SyZyTbJtKz44826tagX5iaE9-HJ4bwIPaXkhNbzuvdxPKGcUXUPLagUtCGCkftoQQhpGy7otyP0KOdNfSpJ2EN0xBmhRLXdAv34bFLxJuAAJhecr2aTIGMXE3bzZIuPUw030U8Fj3GAkPGNL2tsttvgrdnnGZeIyxrwafi-Bj9CepHx4HMVAp5gTtGPZuWnFfaTr38Vfw04l3nYPUYPnAkZntzex-jr-3dfzj42F5cfzs9OLxorRKeaHpxi3DpmB9UJQ7oBetYzbghzYFvDbQfEQWsFdHRY9qqzVjkmrRGML6njx-jNwbud-xEGC1NJJuhtqoOlnY7G67-Tya_1Kl7rpRSKLEUVvLwVpHg1Qy569NlCCGaCOGfNuCRcECK7ij7_B93EOdUlVkq0ikkmqazUqwNlU8w5gbsbhhK9L1XvS9W_Sq3wsz_Hv0N_t1gBegBufIDdf1T67fnlp4P0J7QfsTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469252515</pqid></control><display><type>article</type><title>Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study</title><source>Oxford University Press Journals Current</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yue ; Ibrahim, Joseph G. ; Zhu, Hongtu</creator><creatorcontrib>Wang, Yue ; Ibrahim, Joseph G. ; Zhu, Hongtu</creatorcontrib><description>Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13219</identifier><identifier>PMID: 32010968</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Alzheimer's disease ; Biomarkers ; high‐dimensional data ; Least squares ; longitudinal data ; Medical imaging ; Neurodegenerative diseases ; Neuroimaging ; neuroimaging data ; Principal components analysis ; Robustness (mathematics) ; Survival ; survival data</subject><ispartof>Biometrics, 2020-12, Vol.76 (4), p.1109-1119</ispartof><rights>2020 The International Biometric Society</rights><rights>2020 The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4489-bef923cf2cd984a08deb2b23a02fec6a3c8e0fe6c4e81d7b98cc9f25ca42371f3</citedby><cites>FETCH-LOGICAL-c4489-bef923cf2cd984a08deb2b23a02fec6a3c8e0fe6c4e81d7b98cc9f25ca42371f3</cites><orcidid>0000-0002-4847-8826 ; 0000-0002-6781-2690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32010968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Ibrahim, Joseph G.</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><title>Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Biomarkers</subject><subject>high‐dimensional data</subject><subject>Least squares</subject><subject>longitudinal data</subject><subject>Medical imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>neuroimaging data</subject><subject>Principal components analysis</subject><subject>Robustness (mathematics)</subject><subject>Survival</subject><subject>survival data</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFDEUhoModq3e-AMk4IUiTM3n7ORGqMWPQqVeKHgXMpmT3SyZyTbJtKz44826tagX5iaE9-HJ4bwIPaXkhNbzuvdxPKGcUXUPLagUtCGCkftoQQhpGy7otyP0KOdNfSpJ2EN0xBmhRLXdAv34bFLxJuAAJhecr2aTIGMXE3bzZIuPUw030U8Fj3GAkPGNL2tsttvgrdnnGZeIyxrwafi-Bj9CepHx4HMVAp5gTtGPZuWnFfaTr38Vfw04l3nYPUYPnAkZntzex-jr-3dfzj42F5cfzs9OLxorRKeaHpxi3DpmB9UJQ7oBetYzbghzYFvDbQfEQWsFdHRY9qqzVjkmrRGML6njx-jNwbud-xEGC1NJJuhtqoOlnY7G67-Tya_1Kl7rpRSKLEUVvLwVpHg1Qy569NlCCGaCOGfNuCRcECK7ij7_B93EOdUlVkq0ikkmqazUqwNlU8w5gbsbhhK9L1XvS9W_Sq3wsz_Hv0N_t1gBegBufIDdf1T67fnlp4P0J7QfsTU</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Wang, Yue</creator><creator>Ibrahim, Joseph G.</creator><creator>Zhu, Hongtu</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4847-8826</orcidid><orcidid>https://orcid.org/0000-0002-6781-2690</orcidid></search><sort><creationdate>202012</creationdate><title>Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study</title><author>Wang, Yue ; Ibrahim, Joseph G. ; Zhu, Hongtu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4489-bef923cf2cd984a08deb2b23a02fec6a3c8e0fe6c4e81d7b98cc9f25ca42371f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Biomarkers</topic><topic>high‐dimensional data</topic><topic>Least squares</topic><topic>longitudinal data</topic><topic>Medical imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>neuroimaging data</topic><topic>Principal components analysis</topic><topic>Robustness (mathematics)</topic><topic>Survival</topic><topic>survival data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Ibrahim, Joseph G.</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yue</au><au>Ibrahim, Joseph G.</au><au>Zhu, Hongtu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2020-12</date><risdate>2020</risdate><volume>76</volume><issue>4</issue><spage>1109</spage><epage>1119</epage><pages>1109-1119</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32010968</pmid><doi>10.1111/biom.13219</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4847-8826</orcidid><orcidid>https://orcid.org/0000-0002-6781-2690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2020-12, Vol.76 (4), p.1109-1119 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7549074 |
source | Oxford University Press Journals Current; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Alzheimer's disease Biomarkers high‐dimensional data Least squares longitudinal data Medical imaging Neurodegenerative diseases Neuroimaging neuroimaging data Principal components analysis Robustness (mathematics) Survival survival data |
title | Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20least%20squares%20for%20functional%20joint%20models%20with%20applications%20to%20the%20Alzheimer's%20disease%20neuroimaging%20initiative%20study&rft.jtitle=Biometrics&rft.au=Wang,%20Yue&rft.date=2020-12&rft.volume=76&rft.issue=4&rft.spage=1109&rft.epage=1119&rft.pages=1109-1119&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13219&rft_dat=%3Cproquest_pubme%3E2469252515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469252515&rft_id=info:pmid/32010968&rfr_iscdi=true |