Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study

Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and surviv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2020-12, Vol.76 (4), p.1109-1119
Hauptverfasser: Wang, Yue, Ibrahim, Joseph G., Zhu, Hongtu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1119
container_issue 4
container_start_page 1109
container_title Biometrics
container_volume 76
creator Wang, Yue
Ibrahim, Joseph G.
Zhu, Hongtu
description Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.
doi_str_mv 10.1111/biom.13219
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7549074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469252515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4489-bef923cf2cd984a08deb2b23a02fec6a3c8e0fe6c4e81d7b98cc9f25ca42371f3</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoModq3e-AMk4IUiTM3n7ORGqMWPQqVeKHgXMpmT3SyZyTbJtKz44826tagX5iaE9-HJ4bwIPaXkhNbzuvdxPKGcUXUPLagUtCGCkftoQQhpGy7otyP0KOdNfSpJ2EN0xBmhRLXdAv34bFLxJuAAJhecr2aTIGMXE3bzZIuPUw030U8Fj3GAkPGNL2tsttvgrdnnGZeIyxrwafi-Bj9CepHx4HMVAp5gTtGPZuWnFfaTr38Vfw04l3nYPUYPnAkZntzex-jr-3dfzj42F5cfzs9OLxorRKeaHpxi3DpmB9UJQ7oBetYzbghzYFvDbQfEQWsFdHRY9qqzVjkmrRGML6njx-jNwbud-xEGC1NJJuhtqoOlnY7G67-Tya_1Kl7rpRSKLEUVvLwVpHg1Qy569NlCCGaCOGfNuCRcECK7ij7_B93EOdUlVkq0ikkmqazUqwNlU8w5gbsbhhK9L1XvS9W_Sq3wsz_Hv0N_t1gBegBufIDdf1T67fnlp4P0J7QfsTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469252515</pqid></control><display><type>article</type><title>Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study</title><source>Oxford University Press Journals Current</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yue ; Ibrahim, Joseph G. ; Zhu, Hongtu</creator><creatorcontrib>Wang, Yue ; Ibrahim, Joseph G. ; Zhu, Hongtu</creatorcontrib><description>Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13219</identifier><identifier>PMID: 32010968</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Alzheimer's disease ; Biomarkers ; high‐dimensional data ; Least squares ; longitudinal data ; Medical imaging ; Neurodegenerative diseases ; Neuroimaging ; neuroimaging data ; Principal components analysis ; Robustness (mathematics) ; Survival ; survival data</subject><ispartof>Biometrics, 2020-12, Vol.76 (4), p.1109-1119</ispartof><rights>2020 The International Biometric Society</rights><rights>2020 The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4489-bef923cf2cd984a08deb2b23a02fec6a3c8e0fe6c4e81d7b98cc9f25ca42371f3</citedby><cites>FETCH-LOGICAL-c4489-bef923cf2cd984a08deb2b23a02fec6a3c8e0fe6c4e81d7b98cc9f25ca42371f3</cites><orcidid>0000-0002-4847-8826 ; 0000-0002-6781-2690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32010968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Ibrahim, Joseph G.</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><title>Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Biomarkers</subject><subject>high‐dimensional data</subject><subject>Least squares</subject><subject>longitudinal data</subject><subject>Medical imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>neuroimaging data</subject><subject>Principal components analysis</subject><subject>Robustness (mathematics)</subject><subject>Survival</subject><subject>survival data</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFDEUhoModq3e-AMk4IUiTM3n7ORGqMWPQqVeKHgXMpmT3SyZyTbJtKz44826tagX5iaE9-HJ4bwIPaXkhNbzuvdxPKGcUXUPLagUtCGCkftoQQhpGy7otyP0KOdNfSpJ2EN0xBmhRLXdAv34bFLxJuAAJhecr2aTIGMXE3bzZIuPUw030U8Fj3GAkPGNL2tsttvgrdnnGZeIyxrwafi-Bj9CepHx4HMVAp5gTtGPZuWnFfaTr38Vfw04l3nYPUYPnAkZntzex-jr-3dfzj42F5cfzs9OLxorRKeaHpxi3DpmB9UJQ7oBetYzbghzYFvDbQfEQWsFdHRY9qqzVjkmrRGML6njx-jNwbud-xEGC1NJJuhtqoOlnY7G67-Tya_1Kl7rpRSKLEUVvLwVpHg1Qy569NlCCGaCOGfNuCRcECK7ij7_B93EOdUlVkq0ikkmqazUqwNlU8w5gbsbhhK9L1XvS9W_Sq3wsz_Hv0N_t1gBegBufIDdf1T67fnlp4P0J7QfsTU</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Wang, Yue</creator><creator>Ibrahim, Joseph G.</creator><creator>Zhu, Hongtu</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4847-8826</orcidid><orcidid>https://orcid.org/0000-0002-6781-2690</orcidid></search><sort><creationdate>202012</creationdate><title>Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study</title><author>Wang, Yue ; Ibrahim, Joseph G. ; Zhu, Hongtu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4489-bef923cf2cd984a08deb2b23a02fec6a3c8e0fe6c4e81d7b98cc9f25ca42371f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Biomarkers</topic><topic>high‐dimensional data</topic><topic>Least squares</topic><topic>longitudinal data</topic><topic>Medical imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>neuroimaging data</topic><topic>Principal components analysis</topic><topic>Robustness (mathematics)</topic><topic>Survival</topic><topic>survival data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Ibrahim, Joseph G.</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yue</au><au>Ibrahim, Joseph G.</au><au>Zhu, Hongtu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2020-12</date><risdate>2020</risdate><volume>76</volume><issue>4</issue><spage>1109</spage><epage>1119</epage><pages>1109-1119</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32010968</pmid><doi>10.1111/biom.13219</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4847-8826</orcidid><orcidid>https://orcid.org/0000-0002-6781-2690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2020-12, Vol.76 (4), p.1109-1119
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7549074
source Oxford University Press Journals Current; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Alzheimer's disease
Biomarkers
high‐dimensional data
Least squares
longitudinal data
Medical imaging
Neurodegenerative diseases
Neuroimaging
neuroimaging data
Principal components analysis
Robustness (mathematics)
Survival
survival data
title Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20least%20squares%20for%20functional%20joint%20models%20with%20applications%20to%20the%20Alzheimer's%20disease%20neuroimaging%20initiative%20study&rft.jtitle=Biometrics&rft.au=Wang,%20Yue&rft.date=2020-12&rft.volume=76&rft.issue=4&rft.spage=1109&rft.epage=1119&rft.pages=1109-1119&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13219&rft_dat=%3Cproquest_pubme%3E2469252515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469252515&rft_id=info:pmid/32010968&rfr_iscdi=true