Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study

Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and surviv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2020-12, Vol.76 (4), p.1109-1119
Hauptverfasser: Wang, Yue, Ibrahim, Joseph G., Zhu, Hongtu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.
ISSN:0006-341X
1541-0420
DOI:10.1111/biom.13219