Optical framed knots as information carriers

Modern beam shaping techniques have enabled the generation of optical fields displaying a wealth of structural features, which include three-dimensional topologies such as Möbius, ribbon strips and knots. However, unlike simpler types of structured light, the topological properties of these optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-10, Vol.11 (1), p.5119-5119, Article 5119
Hauptverfasser: Larocque, Hugo, D’Errico, Alessio, Ferrer-Garcia, Manuel F., Carmi, Avishy, Cohen, Eliahu, Karimi, Ebrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern beam shaping techniques have enabled the generation of optical fields displaying a wealth of structural features, which include three-dimensional topologies such as Möbius, ribbon strips and knots. However, unlike simpler types of structured light, the topological properties of these optical fields have hitherto remained more of a fundamental curiosity as opposed to a feature that can be applied in modern technologies. Due to their robustness against external perturbations, topological invariants in physical systems are increasingly being considered as a means to encode information. Hence, structured light with topological properties could potentially be used for such purposes. Here, we introduce the experimental realization of structures known as framed knots within optical polarization fields. We further develop a protocol in which the topological properties of framed knots are used in conjunction with prime factorization to encode information. Beam shaping methods can generate optical fields with nontrivial topologies, which are invariant against perturbations and thus interesting for information encoding. Here, the authors introduce the realization of framed optical knots to encode programs with the conjoined use of prime factorization.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-18792-z