Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches

•The vaccine is composed of immunodominant regions of SARS-CoV-2 non-structural proteins.•Also, the functional region of the spike protein is incorporated in the vaccine construct.•The final vaccine construct contains multiple CD8+ and CD4+ overlapping epitopes•Also, it contains multiple IFN-γ induc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccine 2020-11, Vol.38 (48), p.7612-7628
Hauptverfasser: Safavi, Ashkan, Kefayat, Amirhosein, Mahdevar, Elham, Abiri, Ardavan, Ghahremani, Fatemeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•The vaccine is composed of immunodominant regions of SARS-CoV-2 non-structural proteins.•Also, the functional region of the spike protein is incorporated in the vaccine construct.•The final vaccine construct contains multiple CD8+ and CD4+ overlapping epitopes•Also, it contains multiple IFN-γ inducing, linear and conformational B cell epitopes.•It forms significant interactions and stable complex with TLR-4/MD.•The DNA vaccine is designed by reverse translation of the final vaccine construct. SARS-CoV-2 causes a severe respiratory disease called COVID-19. Currently, global health is facing its devastating outbreak. However, there is no vaccine available against this virus up to now. In this study, a novel multi-epitope vaccine against SARS-CoV-2 was designed to provoke both innate and adaptive immune responses. The immunodominant regions of six non-structural proteins (nsp7, nsp8, nsp9, nsp10, nsp12 and nsp14) of SARS-CoV-2 were selected by multiple immunoinformatic tools to provoke T cell immune response. Also, immunodominant fragment of the functional region of SARS-CoV-2 spike (400–510 residues) protein was selected for inducing neutralizing antibodies production. The selected regions’ sequences were connected to each other by furin-sensitive linker (RVRR). Moreover, the functional region of β-defensin as a well-known agonist for the TLR-4/MD complex was added at the N-terminus of the vaccine using (EAAAK)3 linker. Also, a CD4 + T-helper epitope, PADRE, was used at the C-terminal of the vaccine by GPGPG and A(EAAAK)2A linkers to form the final vaccine construct. The physicochemical properties, allergenicity, antigenicity, functionality and population coverage of the final vaccine construct were analyzed. The final vaccine construct was an immunogenic, non-allergen and unfunctional protein which contained multiple CD8 + and CD4 + overlapping epitopes, IFN-γ inducing epitopes, linear and conformational B cell epitopes. It could form stable and significant interactions with TLR-4/MD according to molecular docking and dynamics simulations. Global population coverage of the vaccine for HLA-I and II were estimated 96.2% and 97.1%, respectively. At last, the final vaccine construct was reverse translated to design the DNA vaccine. Although the designed vaccine exhibited high efficacy in silico, further experimental validation is necessary.
ISSN:0264-410X
1873-2518
DOI:10.1016/j.vaccine.2020.10.016