Exact solutions of the harmonic oscillator plus non-polynomial interaction
The exact solutions to a one-dimensional harmonic oscillator plus a non-polynomial interaction a x² + b x²/(1 + c x²) (a > 0, c > 0) are given by the confluent Heun functions Hc (α, β, γ, δ, η; z). The minimum value of the potential well is calculated as V min ( x ) = − ( a + | b | − 2 a | b |...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The exact solutions to a one-dimensional harmonic oscillator plus a non-polynomial interaction a x² + b x²/(1 + c x²) (a > 0, c > 0) are given by the confluent Heun functions Hc
(α, β, γ, δ, η; z). The minimum value of the potential well is calculated as
V
min
(
x
)
=
−
(
a
+
|
b
|
−
2
a
|
b
|
)
/
c
at
x
=
±
[
(
|
b
|
/
a
−
1
)
/
c
]
1
/
2
(|b| > a) for the double-well case (b < 0). We illustrate the wave functions through varying the potential parameters a, b, c and show that they are pulled back to the origin when the potential parameter b increases for given values of a and c. However, we find that the wave peaks are concave to the origin as the parameter |b| is increased. |
---|---|
ISSN: | 1364-5021 1471-2946 |
DOI: | 10.1098/rspa.2020.0050 |