Inhibition of MyD88 by a novel inhibitor reverses two-thirds of the infarct area in myocardial ischemia and reperfusion injury
Cardiomyocytes, macrophages, and fibroblasts play important roles in inflammation and repair during myocardial ischemia/reperfusion injury (MIRI). Myeloid differentiation primary response 88 (MyD88) is upregulated in immunocytes, cardiomyocytes, and fibroblasts during MIRI. MyD88 induces the secreti...
Gespeichert in:
Veröffentlicht in: | American journal of translational research 2020-01, Vol.12 (9), p.5151-5169 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardiomyocytes, macrophages, and fibroblasts play important roles in inflammation and repair during myocardial ischemia/reperfusion injury (MIRI). Myeloid differentiation primary response 88 (MyD88) is upregulated in immunocytes, cardiomyocytes, and fibroblasts during MIRI. MyD88 induces the secretion of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), while fibroblasts are recruited and activated to mediate cardiac remodeling. The aim of this study was to assess the anti-MIRI effect and mode of action of the novel MyD88 inhibitor TJ-M2010-5. We synthesized TJ-M2010-5 and identified its target by co-immunoprecipitation, after which we established a murine MIRI model and tested the protective effect of TJ-M2010-5 by immunohistochemistry, flow cytometry, real-time PCR, and western blotting. Neonatal rat cardiomyocytes subjected to anoxia/reoxygenation were also isolated and their supernatants used to stimulate cardiac macrophagocytes and fibroblasts
in vitro
. MyD88 was found upregulated during the early and late phases after MIRI. The MyD88 inhibitor considerably improved cardiac function, reduced cardiomyocyte apoptosis, reduced IL-1β, IL-6, and TNF-α secretion, and inhibited CD80+CD86+MHCII+ macrophage and fibroblast migration. Moreover, TJ-M2010-5 markedly inhibited Toll-like receptor/MyD88 signaling
in vivo
and
in vitro
. Thus, our findings highlight TJ-M2010-5 as a potential therapeutic agent for MIRI treatment. |
---|---|
ISSN: | 1943-8141 1943-8141 |