Cancer Cell Coating Nanoparticles for Optimal Tumor-Specific Cytokine Delivery
Although cytokine therapy is an attractive strategy to build a more robust immune response in tumors, cytokines have faced clinical failures due to toxicity. In particular, interleukin-12 has shown great clinical promise but was limited in translation because of systemic toxicity. In this study, we...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-09, Vol.14 (9), p.11238-11253 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although cytokine therapy is an attractive strategy to build a more robust immune response in tumors, cytokines have faced clinical failures due to toxicity. In particular, interleukin-12 has shown great clinical promise but was limited in translation because of systemic toxicity. In this study, we demonstrate an enhanced ability to reduce toxicity without affecting the efficacy of IL-12 therapy. We engineer the material properties of a NP to meet the enhanced demands for optimal cytokine delivery by using the layer-by-layer (LbL) approach. Importantly, using LbL, we demonstrate cell-level trafficking of NPs to preferentially localize to the cell’s outer surface and act as a drug depot, which is required for optimal payload activity on neighboring cytokine membrane receptors. LbL-NPs showed efficacy against a tumor challenge in both colorectal and ovarian tumors at doses that were not tolerated when administered carrier-free. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.0c03109 |