Sequences of Intonation Units form a ~ 1 Hz rhythm
Studies of speech processing investigate the relationship between temporal structure in speech stimuli and neural activity. Despite clear evidence that the brain tracks speech at low frequencies (~ 1 Hz), it is not well understood what linguistic information gives rise to this rhythm. In this study,...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-09, Vol.10 (1), p.15846-15846, Article 15846 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies of speech processing investigate the relationship between temporal structure in speech stimuli and neural activity. Despite clear evidence that the brain tracks speech at low frequencies (~ 1 Hz), it is not well understood what linguistic information gives rise to this rhythm. In this study, we harness linguistic theory to draw attention to Intonation Units (IUs), a fundamental prosodic unit of human language, and characterize their temporal structure as captured in the speech envelope, an acoustic representation relevant to the neural processing of speech. IUs are defined by a specific pattern of syllable delivery, together with resets in pitch and articulatory force. Linguistic studies of spontaneous speech indicate that this prosodic segmentation paces new information in language use across diverse languages. Therefore, IUs provide a universal structural cue for the cognitive dynamics of speech production and comprehension. We study the relation between IUs and periodicities in the speech envelope, applying methods from investigations of neural synchronization. Our sample includes recordings from every-day speech contexts of over 100 speakers and six languages. We find that sequences of IUs form a consistent low-frequency rhythm and constitute a significant periodic cue within the speech envelope. Our findings allow to predict that IUs are utilized by the neural system when tracking speech. The methods we introduce here facilitate testing this prediction in the future (i.e., with physiological data). |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-72739-4 |