GMM nonparametric correction methods for logistic regression with error‐contaminated covariates and partially observed instrumental variables

We consider logistic regression with covariate measurement error. Most existing approaches require certain replicates of the error‐contaminated covariates, which may not be available in the data. We propose generalized method of moments (GMM) nonparametric correction approaches that use instrumental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2019-09, Vol.46 (3), p.898-919
Hauptverfasser: Song, Xiao, Wang, Ching‐Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider logistic regression with covariate measurement error. Most existing approaches require certain replicates of the error‐contaminated covariates, which may not be available in the data. We propose generalized method of moments (GMM) nonparametric correction approaches that use instrumental variables observed in a calibration subsample. The instrumental variable is related to the underlying true covariates through a general nonparametric model, and the probability of being in the calibration subsample may depend on the observed variables. We first take a simple approach adopting the inverse selection probability weighting technique using the calibration subsample. We then improve the approach based on the GMM using the whole sample. The asymptotic properties are derived, and the finite sample performance is evaluated through simulation studies and an application to a real data set.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12364