Classification of Hepatitis Viruses from Sequencing Chromatograms Using Multiscale Permutation Entropy and Support Vector Machines

Classifying nucleic acid trace files is an important issue in molecular biology researches. For the purpose of obtaining better classification performance, the question of which features are used and what classifier is implemented to best represent the properties of nucleic acid trace files plays a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2019-11, Vol.21 (12), p.1149
Hauptverfasser: Öz, Ersoy, Aşkın, Öyküm Esra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classifying nucleic acid trace files is an important issue in molecular biology researches. For the purpose of obtaining better classification performance, the question of which features are used and what classifier is implemented to best represent the properties of nucleic acid trace files plays a vital role. In this study, different feature extraction methods based on statistical and entropy theory are utilized to discriminate deoxyribonucleic acid chromatograms, and distinguishing their signals visually is almost impossible. Extracted features are used as the input feature set for the classifiers of Support Vector Machines (SVM) with different kernel functions. The proposed framework is applied to a total number of 200 hepatitis nucleic acid trace files which consist of Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV). While the use of statistical-based feature extraction methods allows representing the properties of hepatitis nucleic acid trace files with descriptive measures such as mean, median and standard deviation, entropy-based feature extraction methods including permutation entropy and multiscale permutation entropy enable quantifying the complexity of these files. The results indicate that using statistical and entropy-based features produces exceptionally high performances in terms of accuracies (reached at nearly 99%) in classifying HBV and HCV.
ISSN:1099-4300
1099-4300
DOI:10.3390/e21121149