Quantifying the effects of surface conveyance of treated wastewater effluent on groundwater, surface water, and nutrient dynamics in a large river floodplain
Restoration and reconnection of floodplain systems provide multiple societal and ecosystem benefits, while providing municipalities the opportunity to attempt alternative approaches to maintain infrastructure protection and function. In some restored floodplains, treated wastewater effluent discharg...
Gespeichert in:
Veröffentlicht in: | Ecological engineering 2019-04, Vol.129, p.123-133 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Restoration and reconnection of floodplain systems provide multiple societal and ecosystem benefits, while providing municipalities the opportunity to attempt alternative approaches to maintain infrastructure protection and function. In some restored floodplains, treated wastewater effluent discharge is redirected over land instead of directly into rivers to allow natural flow and infiltration, to facilitate restoration designs such as levee setback, and to provide additional freshwater to floodplain ecosystems. However, indirect discharge of treated effluent over land may pose risks to surface and groundwater when pollutants like excess nutrients enter the floodplain and undergo transformation. We investigated the consequences for groundwater and surface water quality when effluent was redirected as open water channels over a floodplain surface. In this study, seasonal floodplain nutrient concentrations in groundwater and surface water were observed for more than 5 years as a floodplain and wastewater treatment plant underwent a major restoration project that included river-floodplain reconnection with levee setback and redirection of effluent discharge from a river channel to open flow across the restored floodplain. Nutrient loading to the surrounding floodplain groundwater and surface water was observed, but based on measures of hydrological connectivity, groundwater flow paths, and biogeochemistry, nutrients from the effluent moved within the floodplain with minimal effect to the surrounding floodplain water quality. We did not find evidence of substantial additional processing that could replace advanced nutrient treatment in this system, however we did observe evidence of diverse nutrient processes that may support enhanced retention if treatment channels were designed to enhance these processes. We suggest that indirect discharge of high quality treated effluent in a restored floodplain is a viable alternative to direct discharge into a river when groundwater flow directs that discharge to habitats where minimal nutrient sensitivity is expected. |
---|---|
ISSN: | 0925-8574 1872-6992 |
DOI: | 10.1016/j.ecoleng.2018.12.030 |