Heterogeneity of circulating tumor cell dissemination and lung metastases in a subcutaneous Lewis lung carcinoma model
Subcutaneous ( s.c. ) tumor models are widely used in pre-clinical cancer metastasis research. Despite this, the dynamics and natural progression of circulating tumor cells (CTCs) and CTC clusters (CTCCs) in peripheral blood are poorly understood in these models. In this work, we used a new techniqu...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2020-07, Vol.11 (7), p.3633-3647 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Subcutaneous ( s.c. ) tumor models are widely used in pre-clinical cancer metastasis research. Despite this, the dynamics and natural progression of circulating tumor cells (CTCs) and CTC clusters (CTCCs) in peripheral blood are poorly understood in these models. In this work, we used a new technique called ‘diffuse in vivo flow cytometry’ (DiFC) to study CTC and CTCC dissemination in an s.c. Lewis lung carcinoma (LLC) model in mice. Tumors were grown in the rear flank and we performed DiFC up to 31 days after inoculation. At the study endpoint, lungs were excised and bioluminescence imaging (BLI) was performed to determine the extent of lung metastases. We also used fluorescence macro-cryotome imaging to visualize infiltration and growth of the primary tumor. DiFC revealed significant heterogeneity in CTC and CTCC numbers amongst all mice studied, despite using clonally identical LLC cells and tumor placement. Maximum DiFC count rates corresponded to 0.1 to 14 CTCs per mL of peripheral blood. In general, CTC numbers did not necessarily increase monotonically over time and were poorly correlated with tumor volume. However, there was a good correlation between CTC and CTCC numbers in peripheral blood and lung metastases. We attribute the differences in CTC numbers primarily due to growth patterns of the primary tumor. This study is one of the few reports of CTC shedding dynamics in sub-cutaneous metastasis models and underscores the value of in vivo methods for continuous, non-invasive CTC monitoring. |
---|---|
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.395289 |