Counterion Enhanced Organocatalysis: A Novel Approach for the Asymmetric Transfer Hydrogenation of Enones

We present a novel strategy for organocatalytic transfer hydrogenations relying on an ion‐paired catalyst of natural l‐amino acids as main source of chirality in combination with racemic, atropisomeric phosphoric acids as counteranion. The combination of a chiral cation with a structurally flexible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2020-07, Vol.12 (14), p.3776-3782
Hauptverfasser: Scharinger, Fabian, Márk Pálvölgyi, Ádám, Zeindlhofer, Veronika, Schnürch, Michael, Schröder, Christian, Bica‐Schröder, Katharina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel strategy for organocatalytic transfer hydrogenations relying on an ion‐paired catalyst of natural l‐amino acids as main source of chirality in combination with racemic, atropisomeric phosphoric acids as counteranion. The combination of a chiral cation with a structurally flexible anion resulted in a novel chiral framework for asymmetric transfer hydrogenations with enhanced selectivity through synergistic effects. The optimized catalytic system, in combination with a Hantzsch ester as hydrogen source for biomimetic transfer hydrogenation, enabled high enantioselectivity and excellent yields for a series of α,β‐unsaturated cyclohexenones under mild conditions. Moreover, owing to the use of readily available and chiral pool‐derived building blocks, it could be prepared in a straightforward and significantly cheaper way compared to the current state of the art. Snap it with organocat: We present a novel strategy for organocatalytic transfer hydrogenations relying on an ion‐paired catalyst of natural l‐amino acids as main source of chirality in combination with racemic, atropisomeric phosphoric acids as counteranion.
ISSN:1867-3880
1867-3899
DOI:10.1002/cctc.202000414