River Plume Liftoff Dynamics and Surface Expressions

The water surface expression of liftoff and its dependence on discharge are examined using numerical simulations with the Regional Ocean Modeling System (ROMS). Liftoff is the process by which buoyant river water separates from the bed and flows over denser saltwater. During low‐discharge conditions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2020-07, Vol.56 (7), p.e2019WR026475-n/a
Hauptverfasser: Branch, R. A., Horner‐Devine, A. R., Kumar, N., Poggioli, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The water surface expression of liftoff and its dependence on discharge are examined using numerical simulations with the Regional Ocean Modeling System (ROMS). Liftoff is the process by which buoyant river water separates from the bed and flows over denser saltwater. During low‐discharge conditions liftoff occurs in the river and is accompanied by a change in the surface slope. During high‐discharge conditions liftoff occurs outside the mouth and generates a ridge on the water surface. The location and height of the ridge can be described by analytical equations in terms of discharge, shelf slope, and river mouth aspect ratio. The offshore distance and height of the ridge are proportional to the river discharge and vary inversely with river mouth aspect ratio. For steep shelf slopes liftoff occurs close to the river mouth and generates a large ridge. The ridge is modified, but not eliminated, by the presence of tides. The water surface slope change at the ridge peak is large enough to be detected by the upcoming Surface Water and Ocean Topography (SWOT) altimeter and can be used to identify the liftoff location during high discharge. However, during low discharge the water surface slope change at the liftoff location is too small to be detected by SWOT. These results indicate that remote measurements of the presence or absence of the ridge may be useful to distinguish between low and high flows, and remote measurements of the ridge location or height could be used to estimate freshwater discharge. Key Points River discharge generates a ridge on the water surface at the liftoff location that may be remotely detectable Liftoff location and ridge height are predicted by equations in terms of discharge, shelf slope, and river mouth aspect ratio Remote measurements of the location or height of the ridge could be used to estimate discharge
ISSN:0043-1397
1944-7973
DOI:10.1029/2019WR026475