Synthesis and Adsorption Properties of Novel Bacterial Cellulose/Graphene Oxide/Attapulgite Materials for Cu and Pb Ions in Aqueous Solutions
Removing heavy metal ions from industrial wastewater is one of the most important and difficult areas of the water treatment industry. In this study, Bacterial Cellulose/Polyvinyl Alcohol/Graphene Oxide/Attapulgite (BC/PVA/GO/APT) composites were successfully prepared via a repeated freeze-thaw meth...
Gespeichert in:
Veröffentlicht in: | Materials 2020-08, Vol.13 (17), p.3703 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Removing heavy metal ions from industrial wastewater is one of the most important and difficult areas of the water treatment industry. In this study, Bacterial Cellulose/Polyvinyl Alcohol/Graphene Oxide/Attapulgite (BC/PVA/GO/APT) composites were successfully prepared via a repeated freeze-thaw method using bacterial cellulose, polyvinyl alcohol as the skeleton, and graphene oxide, attapulgite as fillers. The capacities of adsorbing Cu2+ and Pb2+ ions in solution were investigated. FTIR, XRD, SEM, BET, and TG-DSC analyses showed that the BC/PVA/GO/APT hydrogel has a better hydrophilicity, a larger specific surface area and a better thermal stability than traditional materials. We found that the adsorption of Cu2+ and Pb2+ ions can be accurately predicted by the Freundlich kinetic model, and the optimal adsorption capacities of these ions were found to be 150.79 mg/g and 217.8 mg/g respectively. Thermodynamic results showed that the adsorption process is spontaneous and exothermic. BC/PVA/GO/APT composites are suggested to be an ideal adsorption material for removing heavy metal ions from industrial wastewater. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma13173703 |