IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters

A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied psychological measurement 2020-10, Vol.44 (7-8), p.566-567
Hauptverfasser: Guo, Shaoyang, Zheng, Chanjin, Kern, Justin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567
container_issue 7-8
container_start_page 566
container_title Applied psychological measurement
container_volume 44
creator Guo, Shaoyang
Zheng, Chanjin
Kern, Justin L.
description A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G, and 1PL-AG models). IRTBEMM should be of interest to the researchers in IRT estimation and applying IRT models with the guessing and slipping effects to real datasets.
doi_str_mv 10.1177/0146621620932654
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7495790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0146621620932654</sage_id><sourcerecordid>2576917542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-fb350cc5a72a8a2ed6636da02dd18ed90cd57de96cf592b70c16c60dccdc12b83</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMotlb3LrN0M5pkJknjQtBSa6HFUisuQybJtFPnUZMZwX9vhhZBwdW9cL577guAS4yuMeb8BuGEMYIZQSImjCZHoI8pJVGcCH4M-p0cdXoPnHm_RQjFTNBT0IsTyqiIWR-spsvVw3g-v4X3FVzChdLvam1hVjs49k1eqiav1jBAcF4bW3j4ljcbOGmt950QsJci3-26fKGcKm1jnT8HJ5kqvL04xAF4fRyvRk_R7HkyHd3PIp1g3ERZGlOkNVWcqKEi1jAWM6MQMQYPrRFIG8qNFUxnVJCUI42ZZshobTQm6TAegLu9765NS2u0rRqnCrlzYW73JWuVy99KlW_kuv6UPBGUCxQMrg4Grv4IOzWyzL22RaEqW7deEsqZwJwmJKBoj2pXe-9s9tMGI9k9Q_59RiiJ9iU-nFRu69ZV4Rr_89_mjYfU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576917542</pqid></control><display><type>article</type><title>IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SAGE Complete</source><source>PubMed Central</source><creator>Guo, Shaoyang ; Zheng, Chanjin ; Kern, Justin L.</creator><creatorcontrib>Guo, Shaoyang ; Zheng, Chanjin ; Kern, Justin L.</creatorcontrib><description>A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G, and 1PL-AG models). IRTBEMM should be of interest to the researchers in IRT estimation and applying IRT models with the guessing and slipping effects to real datasets.</description><identifier>ISSN: 0146-6216</identifier><identifier>EISSN: 1552-3497</identifier><identifier>DOI: 10.1177/0146621620932654</identifier><identifier>PMID: 34565936</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Computer Program Exchange</subject><ispartof>Applied psychological measurement, 2020-10, Vol.44 (7-8), p.566-567</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020 2020 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-fb350cc5a72a8a2ed6636da02dd18ed90cd57de96cf592b70c16c60dccdc12b83</citedby><cites>FETCH-LOGICAL-c411t-fb350cc5a72a8a2ed6636da02dd18ed90cd57de96cf592b70c16c60dccdc12b83</cites><orcidid>0000-0002-2480-8800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495790/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495790/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21798,27901,27902,43597,43598,53766,53768</link.rule.ids></links><search><creatorcontrib>Guo, Shaoyang</creatorcontrib><creatorcontrib>Zheng, Chanjin</creatorcontrib><creatorcontrib>Kern, Justin L.</creatorcontrib><title>IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters</title><title>Applied psychological measurement</title><description>A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G, and 1PL-AG models). IRTBEMM should be of interest to the researchers in IRT estimation and applying IRT models with the guessing and slipping effects to real datasets.</description><subject>Computer Program Exchange</subject><issn>0146-6216</issn><issn>1552-3497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEUhYMotlb3LrN0M5pkJknjQtBSa6HFUisuQybJtFPnUZMZwX9vhhZBwdW9cL577guAS4yuMeb8BuGEMYIZQSImjCZHoI8pJVGcCH4M-p0cdXoPnHm_RQjFTNBT0IsTyqiIWR-spsvVw3g-v4X3FVzChdLvam1hVjs49k1eqiav1jBAcF4bW3j4ljcbOGmt950QsJci3-26fKGcKm1jnT8HJ5kqvL04xAF4fRyvRk_R7HkyHd3PIp1g3ERZGlOkNVWcqKEi1jAWM6MQMQYPrRFIG8qNFUxnVJCUI42ZZshobTQm6TAegLu9765NS2u0rRqnCrlzYW73JWuVy99KlW_kuv6UPBGUCxQMrg4Grv4IOzWyzL22RaEqW7deEsqZwJwmJKBoj2pXe-9s9tMGI9k9Q_59RiiJ9iU-nFRu69ZV4Rr_89_mjYfU</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Guo, Shaoyang</creator><creator>Zheng, Chanjin</creator><creator>Kern, Justin L.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2480-8800</orcidid></search><sort><creationdate>20201001</creationdate><title>IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters</title><author>Guo, Shaoyang ; Zheng, Chanjin ; Kern, Justin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-fb350cc5a72a8a2ed6636da02dd18ed90cd57de96cf592b70c16c60dccdc12b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Program Exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Shaoyang</creatorcontrib><creatorcontrib>Zheng, Chanjin</creatorcontrib><creatorcontrib>Kern, Justin L.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Shaoyang</au><au>Zheng, Chanjin</au><au>Kern, Justin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters</atitle><jtitle>Applied psychological measurement</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>44</volume><issue>7-8</issue><spage>566</spage><epage>567</epage><pages>566-567</pages><issn>0146-6216</issn><eissn>1552-3497</eissn><abstract>A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G, and 1PL-AG models). IRTBEMM should be of interest to the researchers in IRT estimation and applying IRT models with the guessing and slipping effects to real datasets.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>34565936</pmid><doi>10.1177/0146621620932654</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-2480-8800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0146-6216
ispartof Applied psychological measurement, 2020-10, Vol.44 (7-8), p.566-567
issn 0146-6216
1552-3497
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7495790
source EZB-FREE-00999 freely available EZB journals; SAGE Complete; PubMed Central
subjects Computer Program Exchange
title IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRTBEMM:%20An%20R%20Package%20for%20Estimating%20IRT%20Models%20With%20Guessing%20or%20Slipping%20Parameters&rft.jtitle=Applied%20psychological%20measurement&rft.au=Guo,%20Shaoyang&rft.date=2020-10-01&rft.volume=44&rft.issue=7-8&rft.spage=566&rft.epage=567&rft.pages=566-567&rft.issn=0146-6216&rft.eissn=1552-3497&rft_id=info:doi/10.1177/0146621620932654&rft_dat=%3Cproquest_pubme%3E2576917542%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576917542&rft_id=info:pmid/34565936&rft_sage_id=10.1177_0146621620932654&rfr_iscdi=true