IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters
A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G,...
Gespeichert in:
Veröffentlicht in: | Applied psychological measurement 2020-10, Vol.44 (7-8), p.566-567 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 567 |
---|---|
container_issue | 7-8 |
container_start_page | 566 |
container_title | Applied psychological measurement |
container_volume | 44 |
creator | Guo, Shaoyang Zheng, Chanjin Kern, Justin L. |
description | A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G, and 1PL-AG models). IRTBEMM should be of interest to the researchers in IRT estimation and applying IRT models with the guessing and slipping effects to real datasets. |
doi_str_mv | 10.1177/0146621620932654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7495790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0146621620932654</sage_id><sourcerecordid>2576917542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-fb350cc5a72a8a2ed6636da02dd18ed90cd57de96cf592b70c16c60dccdc12b83</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMotlb3LrN0M5pkJknjQtBSa6HFUisuQybJtFPnUZMZwX9vhhZBwdW9cL577guAS4yuMeb8BuGEMYIZQSImjCZHoI8pJVGcCH4M-p0cdXoPnHm_RQjFTNBT0IsTyqiIWR-spsvVw3g-v4X3FVzChdLvam1hVjs49k1eqiav1jBAcF4bW3j4ljcbOGmt950QsJci3-26fKGcKm1jnT8HJ5kqvL04xAF4fRyvRk_R7HkyHd3PIp1g3ERZGlOkNVWcqKEi1jAWM6MQMQYPrRFIG8qNFUxnVJCUI42ZZshobTQm6TAegLu9765NS2u0rRqnCrlzYW73JWuVy99KlW_kuv6UPBGUCxQMrg4Grv4IOzWyzL22RaEqW7deEsqZwJwmJKBoj2pXe-9s9tMGI9k9Q_59RiiJ9iU-nFRu69ZV4Rr_89_mjYfU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576917542</pqid></control><display><type>article</type><title>IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SAGE Complete</source><source>PubMed Central</source><creator>Guo, Shaoyang ; Zheng, Chanjin ; Kern, Justin L.</creator><creatorcontrib>Guo, Shaoyang ; Zheng, Chanjin ; Kern, Justin L.</creatorcontrib><description>A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G, and 1PL-AG models). IRTBEMM should be of interest to the researchers in IRT estimation and applying IRT models with the guessing and slipping effects to real datasets.</description><identifier>ISSN: 0146-6216</identifier><identifier>EISSN: 1552-3497</identifier><identifier>DOI: 10.1177/0146621620932654</identifier><identifier>PMID: 34565936</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Computer Program Exchange</subject><ispartof>Applied psychological measurement, 2020-10, Vol.44 (7-8), p.566-567</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020 2020 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-fb350cc5a72a8a2ed6636da02dd18ed90cd57de96cf592b70c16c60dccdc12b83</citedby><cites>FETCH-LOGICAL-c411t-fb350cc5a72a8a2ed6636da02dd18ed90cd57de96cf592b70c16c60dccdc12b83</cites><orcidid>0000-0002-2480-8800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495790/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495790/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21798,27901,27902,43597,43598,53766,53768</link.rule.ids></links><search><creatorcontrib>Guo, Shaoyang</creatorcontrib><creatorcontrib>Zheng, Chanjin</creatorcontrib><creatorcontrib>Kern, Justin L.</creatorcontrib><title>IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters</title><title>Applied psychological measurement</title><description>A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G, and 1PL-AG models). IRTBEMM should be of interest to the researchers in IRT estimation and applying IRT models with the guessing and slipping effects to real datasets.</description><subject>Computer Program Exchange</subject><issn>0146-6216</issn><issn>1552-3497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEUhYMotlb3LrN0M5pkJknjQtBSa6HFUisuQybJtFPnUZMZwX9vhhZBwdW9cL577guAS4yuMeb8BuGEMYIZQSImjCZHoI8pJVGcCH4M-p0cdXoPnHm_RQjFTNBT0IsTyqiIWR-spsvVw3g-v4X3FVzChdLvam1hVjs49k1eqiav1jBAcF4bW3j4ljcbOGmt950QsJci3-26fKGcKm1jnT8HJ5kqvL04xAF4fRyvRk_R7HkyHd3PIp1g3ERZGlOkNVWcqKEi1jAWM6MQMQYPrRFIG8qNFUxnVJCUI42ZZshobTQm6TAegLu9765NS2u0rRqnCrlzYW73JWuVy99KlW_kuv6UPBGUCxQMrg4Grv4IOzWyzL22RaEqW7deEsqZwJwmJKBoj2pXe-9s9tMGI9k9Q_59RiiJ9iU-nFRu69ZV4Rr_89_mjYfU</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Guo, Shaoyang</creator><creator>Zheng, Chanjin</creator><creator>Kern, Justin L.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2480-8800</orcidid></search><sort><creationdate>20201001</creationdate><title>IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters</title><author>Guo, Shaoyang ; Zheng, Chanjin ; Kern, Justin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-fb350cc5a72a8a2ed6636da02dd18ed90cd57de96cf592b70c16c60dccdc12b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Program Exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Shaoyang</creatorcontrib><creatorcontrib>Zheng, Chanjin</creatorcontrib><creatorcontrib>Kern, Justin L.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Shaoyang</au><au>Zheng, Chanjin</au><au>Kern, Justin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters</atitle><jtitle>Applied psychological measurement</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>44</volume><issue>7-8</issue><spage>566</spage><epage>567</epage><pages>566-567</pages><issn>0146-6216</issn><eissn>1552-3497</eissn><abstract>A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G, and 1PL-AG models). IRTBEMM should be of interest to the researchers in IRT estimation and applying IRT models with the guessing and slipping effects to real datasets.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>34565936</pmid><doi>10.1177/0146621620932654</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-2480-8800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-6216 |
ispartof | Applied psychological measurement, 2020-10, Vol.44 (7-8), p.566-567 |
issn | 0146-6216 1552-3497 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7495790 |
source | EZB-FREE-00999 freely available EZB journals; SAGE Complete; PubMed Central |
subjects | Computer Program Exchange |
title | IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRTBEMM:%20An%20R%20Package%20for%20Estimating%20IRT%20Models%20With%20Guessing%20or%20Slipping%20Parameters&rft.jtitle=Applied%20psychological%20measurement&rft.au=Guo,%20Shaoyang&rft.date=2020-10-01&rft.volume=44&rft.issue=7-8&rft.spage=566&rft.epage=567&rft.pages=566-567&rft.issn=0146-6216&rft.eissn=1552-3497&rft_id=info:doi/10.1177/0146621620932654&rft_dat=%3Cproquest_pubme%3E2576917542%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576917542&rft_id=info:pmid/34565936&rft_sage_id=10.1177_0146621620932654&rfr_iscdi=true |