IRTBEMM: An R Package for Estimating IRT Models With Guessing or Slipping Parameters

A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied psychological measurement 2020-10, Vol.44 (7-8), p.566-567
Hauptverfasser: Guo, Shaoyang, Zheng, Chanjin, Kern, Justin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recently released R package IRTBEMM is presented in this article. This package puts together several new estimation algorithms (Bayesian EMM, Bayesian E3M, and their maximum likelihood versions) for the Item Response Theory (IRT) models with guessing and slipping parameters (e.g., 3PL, 4PL, 1PL-G, and 1PL-AG models). IRTBEMM should be of interest to the researchers in IRT estimation and applying IRT models with the guessing and slipping effects to real datasets.
ISSN:0146-6216
1552-3497
DOI:10.1177/0146621620932654