Mst1 promotes mitochondrial dysfunction and apoptosis in oxidative stress-induced rheumatoid arthritis synoviocytes
In this study, we investigated the role of macrophage stimulating 1 (Mst1) and the AMPK-Sirt1 signaling pathway in the oxidative stress-induced mitochondrial dysfunction and apoptosis seen in rheumatoid arthritis-related fibroblast-like synoviocytes (RA-FLSs). Mst1 mRNA and protein expression was si...
Gespeichert in:
Veröffentlicht in: | Aging (Albany, NY.) NY.), 2020-07, Vol.12 (16), p.16211-16223 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we investigated the role of macrophage stimulating 1 (Mst1) and the AMPK-Sirt1 signaling pathway in the oxidative stress-induced mitochondrial dysfunction and apoptosis seen in rheumatoid arthritis-related fibroblast-like synoviocytes (RA-FLSs). Mst1 mRNA and protein expression was significantly higher in hydrogen peroxide (H
O
)-treated RA-FLSs than untreated controls. H
O
treatment induced the mitochondrial apoptotic pathway by activating caspase3/9 and Bax in the RA-FLSs. Moreover, H
O
treatment significantly reduced mitochondrial membrane potential and mitochondrial state-3 and state-4 respiration, but increased reactive oxygen species (ROS). Mst1 silencing significantly reduced oxidative stress-induced mitochondrial dysfunction and apoptosis in RA-FLSs. Sirt1 expression was significantly reduced in the H
O
-treated RA-FLSs, but was higher in the H
O
-treated Mst1-silenced RA-FLSs. Pretreatment with selisistat (Sirt1-specific inhibitor) or compound C (AMPK antagonist) significantly reduced the viability and mitochondrial function in H
O
-treated Mst1-silenced RA-FLSs by inhibiting Sirt1 function or Sirt1 expression, respectively. These findings demonstrate that oxidative stress-related upregulation and activation of Mst1 promotes mitochondrial dysfunction and apoptosis in RA-FLSs by inhibiting the AMPK-Sirt1 signaling pathway. This suggests the Mst1-AMPK-Sirt1 axis is a potential target for RA therapy. |
---|---|
ISSN: | 1945-4589 1945-4589 |
DOI: | 10.18632/aging.103643 |