Biological Aging in Childhood and Adolescence Following Experiences of Threat and Deprivation: A Systematic Review and Meta-Analysis

Life history theory argues that exposure to early life adversity (ELA) accelerates development, although existing evidence for this varies. We present a meta-analysis and systematic review testing the hypothesis that ELA involving threat (e.g., violence exposure) will be associated with accelerated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological bulletin 2020-09, Vol.146 (9), p.721-764
Hauptverfasser: Colich, Natalie L., Rosen, Maya L., Williams, Eileen S., McLaughlin, Katie A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Life history theory argues that exposure to early life adversity (ELA) accelerates development, although existing evidence for this varies. We present a meta-analysis and systematic review testing the hypothesis that ELA involving threat (e.g., violence exposure) will be associated with accelerated biological aging across multiple metrics, whereas exposure to deprivation (e.g., neglect, institutional rearing) and low-socioeconomic status (SES) will not. We meta-analyze 54 studies (n = 116,010) examining associations of ELA with pubertal timing and cellular aging (telomere length and DNA methylation age), systematically review 25 studies (n = 3,253) examining ELA and neural markers of accelerated development (cortical thickness and amygdala-prefrontal cortex functional connectivity) and evaluate whether associations of ELA with biological aging vary according to the nature of adversity experienced. ELA overall was associated with accelerated pubertal timing (d = −0.10) and cellular aging (d = −0.21), but these associations varied by adversity type. Moderator analysis revealed that ELA characterized by threat was associated with accelerated pubertal development (d = −0.26) and accelerated cellular aging (d = −0.43), but deprivation and SES were unrelated to accelerated development. Systematic review revealed associations between ELA and accelerated cortical thinning, with threat-related ELA consistently associated with thinning in ventromedial prefrontal cortex, and deprivation and SES associated with thinning in frontoparietal, default, and visual networks. There was no consistent association of ELA with amygdala-PFC connectivity. These findings suggest specificity in the types of early environmental experiences associated with accelerated biological aging and highlight the importance of evaluating how accelerated aging contributes to health disparities and whether this process can be mitigated through early intervention. Public Significance Statement This meta-analysis and systematic review suggests that biological aging following early life adversity, including earlier pubertal timing, advanced cellular aging, and accelerated thinning of the cortex, may be specific to children and adolescents who experienced violent or traumatic experiences early in childhood. No such effect was found for children who experienced deprivation or poverty in the absence of violence or trauma. These findings highlight a potential role of accelerated biological aging in health
ISSN:0033-2909
1939-1455
DOI:10.1037/bul0000270