Dietary phytochemicals modulate experience-dependent changes in Neurexin gene expression and alternative splicing in mice after chronic variable stress exposure
Neurexins (NRXNs) are cell-adhesion molecules important in the formation and remodeling of neural circuits. It has been shown that aversive environmental stimuli can affect the expression pattern of Neurexin genes (Nrxns) impacting the regulation of synaptic strength. Accumulated evidence suggests t...
Gespeichert in:
Veröffentlicht in: | European journal of pharmacology 2020-09, Vol.883, p.173362-173362, Article 173362 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurexins (NRXNs) are cell-adhesion molecules important in the formation and remodeling of neural circuits. It has been shown that aversive environmental stimuli can affect the expression pattern of Neurexin genes (Nrxns) impacting the regulation of synaptic strength. Accumulated evidence suggests that, after chronic exposure to psychological stress, the triggered changes in gene expression and splicing patterns of Nrxns may be involved in aversive conditioning. Previously, we have demonstrated that a novel treatment using dietary phytochemicals can modulate the response to chronic variable stress (CVS) in mice. Here, we aimed to further investigate the long-term plasticity changes after CVS by focusing on the regulation of NRXNs at synapses. We found that CVS differentially triggers the region-specific gene expression of Nrxns in mice Nucleus Accumbens (NAc) and Hippocampus (HIPP). The prophylactic treatment with the combination of two phytochemicals dihydrocaffeic acid (DHCA) and Malvidin-3-O-glucoside (Mal-gluc) differentially modulated the stress-induced effects on Nrxn1 and 3 mRNA expression in these brain areas and promoted the alternative splicing of Nrxn3 in HIPP.
Overall, our data supports the prophylactic effect of dietary phytochemicals in the restoration of stress-induced plasticity changes in mouse brain. By intervening in activity-dependent plasticity at synapses, these compounds may attenuate the effects of chronic aversive conditioning. We propose that an early therapeutic intervention may help with disorders of negative affect, such as depression or post-traumatic stress disorder. Our future studies will address how DHCA/Mal-gluc might serve as a potential complement for current therapies in depression and other mood disorders. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/j.ejphar.2020.173362 |