Multicomponent gold nano-glycoconjugate as a highly immunogenic and protective platform against Burkholderia mallei

Burkholderia mallei ( Bm ) is a facultative intracellular pathogen and the etiological agent of glanders, a highly infectious zoonotic disease occurring in equines and humans. The intrinsic resistance to antibiotics, lack of specific therapy, high mortality, and history as a biothreat agent, prompt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj vaccines 2020-09, Vol.5 (1), p.82-82, Article 82
Hauptverfasser: Tapia, Daniel, Sanchez-Villamil, Javier I., Torres, Alfredo G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Burkholderia mallei ( Bm ) is a facultative intracellular pathogen and the etiological agent of glanders, a highly infectious zoonotic disease occurring in equines and humans. The intrinsic resistance to antibiotics, lack of specific therapy, high mortality, and history as a biothreat agent, prompt the need of a safe and effective vaccine. However, the limited knowledge of protective Bm -specific antigens has hampered the development of a vaccine. Further, the use of antigen-delivery systems that enhance antigen immunogenicity and elicit robust antigen-specific immune responses has been limited and could improve vaccines against Bm . Nanovaccines, in particular gold nanoparticles (AuNPs), have been investigated as a strategy to broaden the repertoire of vaccine-mediated immunity and as a tool to produce multivalent vaccines. To synthesize a nano-glycoconjugate vaccine, six predicted highly immunogenic antigens identified by a genome-wide bio- and immuno-informatic analysis were purified and coupled to AuNPs along with lipopolysaccharide (LPS) from B. thailandensis . Mice immunized intranasally with individual AuNP-protein-LPS conjugates, showed variable degrees of protection against intranasal Bm infection, while an optimized combination formulation (containing protein antigens OmpW, OpcP, and Hemagglutinin, along with LPS) showed complete protection against lethality in a mouse model of inhalational glanders. Animals immunized with different nano-glycoconjugates showed robust antigen-specific antibody responses. Moreover, serum from animals immunized with the optimized nano-glycoconjugate formulation showed sustained antibody responses with increased serum-mediated inhibition of adherence and opsonophagocytic activity in vitro. This study provides the basis for the rational design and construction of a multicomponent vaccine platform against Bm .
ISSN:2059-0105
2059-0105
DOI:10.1038/s41541-020-00229-9