The Northeast Atlantic is running out of excess carbonate in the horizon of cold-water corals communities

The oceanic uptake of atmospheric carbon dioxide (CO 2 ) emitted by human activities alters the seawater carbonate system. Here, the chemical status of the Northeast Atlantic is examined by means of a high-quality database of carbon variables based on the GO-SHIP A25 section (1997–2018). The increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-09, Vol.10 (1), Article 14714
Hauptverfasser: Fontela, Marcos, Pérez, Fiz F., Carracedo, Lidia I., Padín, Xosé A., Velo, Antón, García-Ibañez, Maribel I., Lherminier, Pascale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The oceanic uptake of atmospheric carbon dioxide (CO 2 ) emitted by human activities alters the seawater carbonate system. Here, the chemical status of the Northeast Atlantic is examined by means of a high-quality database of carbon variables based on the GO-SHIP A25 section (1997–2018). The increase of atmospheric CO 2 leads to an increase in ocean anthropogenic carbon (C ant ) and a decrease in carbonate that is unequivocal in the upper and mid-layers (0–2,500 m depth). In the mid-layer, the carbonate content in the Northeast Atlantic is maintained by the interplay between the northward spreading of recently conveyed Mediterranean Water with excess of carbonate and the arrival of subpolar-origin waters close to carbonate undersaturation. In this study we show a progression to undersaturation with respect to aragonite that could compromise the conservation of the habitats and ecosystem services developed by benthic marine calcifiers inhabiting that depth-range, such as the cold-water corals (CWC) communities. For each additional ppm in atmospheric pCO 2 the waters surrounding CWC communities lose carbonate at a rate of − 0.17 ± 0.02 μmol kg −1  ppm −1 . The accomplishment of global climate policies to limit global warming below 1.5–2 ℃ will avoid the exhaustion of excess carbonate in the Northeast Atlantic.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-71793-2