Additive Re-Manufacturing of Mechanically Recycled End-of-Life Glass Fiber-Reinforced Polymers for Value-Added Circular Design

Despite the large use of composites for industrial applications, their end-of-life management is still an open issue for manufacturing, especially in the wind energy sector. Additive manufacturing technology has been emerging as a solution, enhancing circular economy models, and using recycled compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-08, Vol.13 (16), p.3545
Hauptverfasser: Romani, Alessia, Mantelli, Andrea, Suriano, Raffaella, Levi, Marinella, Turri, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the large use of composites for industrial applications, their end-of-life management is still an open issue for manufacturing, especially in the wind energy sector. Additive manufacturing technology has been emerging as a solution, enhancing circular economy models, and using recycled composites for glass fiber-reinforced polymers is spreading as a new additive manufacturing trend. Nevertheless, their mechanical properties are still not comparable to pristine materials. The purpose of this paper is to examine the additive re-manufacturing of end-of-life glass fiber composites with mechanical performances that are comparable to virgin glass fiber-reinforced materials. Through a systematic characterization of the recyclate, requirements of the filler for the liquid deposition modeling process were identified. Printability and material surface quality of different formulations were analyzed using a low-cost modified 3D printer. Two hypothetical design concepts were also manufactured to validate the field of application. Furthermore, an understanding of the mechanical behavior was accomplished by means of tensile tests, and the results were compared with a benchmark formulation with virgin glass fibers. Mechanically recycled glass fibers show the capability to substitute pristine fillers, unlocking their use for new fields of application.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13163545