Fractional order mathematical modeling of COVID-19 transmission

In this article, the mathematical model with different compartments for the transmission dynamics of coronavirus-19 disease (COVID-19) is presented under the fractional-order derivative. Some results regarding the existence of at least one solution through fixed point results are derived. Then for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals solitons and fractals, 2020-10, Vol.139, p.110256-110256, Article 110256
Hauptverfasser: Ahmad, Shabir, Ullah, Aman, Al-Mdallal, Qasem M., Khan, Hasib, Shah, Kamal, Khan, Aziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the mathematical model with different compartments for the transmission dynamics of coronavirus-19 disease (COVID-19) is presented under the fractional-order derivative. Some results regarding the existence of at least one solution through fixed point results are derived. Then for the concerned approximate solution, the modified Euler method for fractional-order differential equations (FODEs) is utilized. Initially, we simulate the results by using some available data for different fractional-order to show the appropriateness of the proposed method. Further, we compare our results with some reported real data against confirmed infected and death cases per day for the initial 67 days in Wuhan city.
ISSN:0960-0779
1873-2887
0960-0779
DOI:10.1016/j.chaos.2020.110256